Universality (dynamical systems)In statistical mechanics, universality is the observation that there are properties for a large class of systems that are independent of the dynamical details of the system. Systems display universality in a scaling limit, when a large number of interacting parts come together. The modern meaning of the term was introduced by Leo Kadanoff in the 1960s, but a simpler version of the concept was already implicit in the van der Waals equation and in the earlier Landau theory of phase transitions, which did not incorporate scaling correctly.
Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Second-order logicIn logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory. First-order logic quantifies only variables that range over individuals (elements of the domain of discourse); second-order logic, in addition, also quantifies over relations. For example, the second-order sentence says that for every formula P, and every individual x, either Px is true or not(Px) is true (this is the law of excluded middle).
Corps ordonnéEn algèbre générale, un corps ordonné est la donnée d'un corps commutatif (K, +, ×), muni d'une relation d'ordre (notée ≤ dans l'article) compatible avec la structure de corps. Dans tout l'article, on note naturellement ≥ la relation d'ordre réciproque de ≤, et l'on note < et > les relations d'ordre strict respectivement associées à ≤ et ≥. On note par ailleurs 0 l'élément neutre de l'addition et 1 celui de la multiplication. On note le plus souvent xy le produit de deux éléments x et y de K.
Espace compactement engendréEn mathématiques, un espace topologique est dit compactement engendré si c'est un k-espace faiblement Hausdorff. Cette notion intervient en théorie de l'homotopie, dans l'étude des CW-complexes. Un espace X est : un k-espace si toute partie « compactement fermée » de X est fermée (une partie F de X est dite compactement fermée si pour toute application continue f d'un compact K dans X, est fermé dans K) ; faiblement Hausdorff si toute application continue d'un compact dans X est fermée.
Formally real fieldIn mathematics, in particular in field theory and real algebra, a formally real field is a field that can be equipped with a (not necessarily unique) ordering that makes it an ordered field. The definition given above is not a first-order definition, as it requires quantifiers over sets. However, the following criteria can be coded as (infinitely many) first-order sentences in the language of fields and are equivalent to the above definition.
Topologie cohérenteLa topologie cohérente est fréquemment utilisée en topologie algébrique, notamment en lien avec les limites inductives. Ce vocable désigne à la fois une méthode assez générale pour construire une topologie mais aussi une topologie particulière des espaces vectoriels réels de dimension infinie. Soit X un espace topologique et (A) une famille de sous-espaces de X. On appelle topologie cohérente déterminée par la famille (A) la topologie la plus fine qui rende continues les injections canoniques j : A → X (topologie finale).