Fonction trigonométriquethumb|upright=1.35|Toutes les valeurs des fonctions trigonométriques d'un angle θ peuvent être représentées géométriquement. En mathématiques, les fonctions trigonométriques permettent de relier les longueurs des côtés d'un triangle en fonction de la mesure des angles aux sommets. Plus généralement, ces fonctions sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle alors fonctions circulaires) et modéliser des phénomènes périodiques.
Fonction spécialeL'analyse mathématique regroupe sous le terme de fonctions spéciales un ensemble de fonctions analytiques non élémentaires, qui sont apparues au comme solutions d'équations de la physique mathématique, particulièrement les équations aux dérivées partielles d'ordre deux et quatre. Comme leurs propriétés ont été étudiées extensivement (et continuent de l'être), on dispose à leur sujet d'une multitude d'informations.
Approximation-preserving reductionIn computability theory and computational complexity theory, especially the study of approximation algorithms, an approximation-preserving reduction is an algorithm for transforming one optimization problem into another problem, such that the distance of solutions from optimal is preserved to some degree. Approximation-preserving reductions are a subset of more general reductions in complexity theory; the difference is that approximation-preserving reductions usually make statements on approximation problems or optimization problems, as opposed to decision problems.
Commande optimaleLa théorie de la commande optimale permet de déterminer la commande d'un système qui minimise (ou maximise) un critère de performance, éventuellement sous des contraintes pouvant porter sur la commande ou sur l'état du système. Cette théorie est une généralisation du calcul des variations. Elle comporte deux volets : le principe du maximum (ou du minimum, suivant la manière dont on définit l'hamiltonien) dû à Lev Pontriaguine et à ses collaborateurs de l'institut de mathématiques Steklov , et l'équation de Hamilton-Jacobi-Bellman, généralisation de l'équation de Hamilton-Jacobi, et conséquence directe de la programmation dynamique initiée aux États-Unis par Richard Bellman.
Théorème flot-max/coupe-minLe théorème flot-max/coupe-min (ou max flow/min cut en anglais) est un théorème important en optimisation et en théorie des graphes. Il stipule qu'étant donné un graphe de flots, le flot maximum pouvant aller de la source au puits est égal à la capacité minimale devant être retirée du graphe afin d'empêcher qu'aucun flot ne puisse passer de la source au puits. Ce théorème est un cas particulier du théorème de dualité en optimisation linéaire et généralise le théorème de Kőnig, le théorème de Hall (dans les graphes bipartis) et le théorème de Menger (dans les graphes quelconques).
Geometric latticeIn the mathematics of matroids and lattices, a geometric lattice is a finite atomistic semimodular lattice, and a matroid lattice is an atomistic semimodular lattice without the assumption of finiteness. Geometric lattices and matroid lattices, respectively, form the lattices of flats of finite, or finite and infinite, matroids, and every geometric or matroid lattice comes from a matroid in this way. A lattice is a poset in which any two elements and have both a least upper bound, called the join or supremum, denoted by , and a greatest lower bound, called the meet or infimum, denoted by .
Problème de la cliquethumb|upright=1.5|Recherche exhaustive d'une 4-clique dans ce graphe à 7 sommets en testant la complétude des C(7,4)= 35 sous-graphes à 4 sommets. En informatique, le problème de la clique est un problème algorithmique qui consiste à trouver des cliques (sous-ensembles de sommets tous adjacents deux à deux, également appelés sous-graphes complets) dans un graphe. Ce problème a plusieurs formulations différentes selon les cliques et les informations sur les cliques devant être trouvées.
Formule de Stirlingvignette La formule de Stirling, du nom du mathématicien écossais James Stirling, donne un équivalent de la factorielle d'un entier naturel n quand n tend vers l'infini : que l'on trouve souvent écrite ainsi : où le nombre e désigne la base de l'exponentielle. C'est Abraham de Moivre qui a initialement démontré la formule suivante : où C est une constante réelle (non nulle). L'apport de Stirling fut d'attribuer la valeur C = à la constante et de donner un développement de ln(n!) à tout ordre.
Problème de bin packingEn recherche opérationnelle et en optimisation combinatoire, le bin packing est un problème algorithmique. Il s'agit de ranger des objets dans un nombre minimum de boîtes. Le problème classique se définit en une dimension, mais il existe de nombreuses variantes en deux ou trois dimensions. Le problème de bin packing peut s'appliquer à un grand nombre de secteurs industriels ou informatiques. Pour la version classique en une dimension : rangement de fichiers sur un support informatique ; découpe de câbles ; remplissage de camions ou de containers avec comme seule contrainte le poids ou le volume des articles.
Programmation par contraintesLa programmation par contraintes (PPC, ou CP pour constraint programming en anglais) est un paradigme de programmation apparu dans les années 1970 et 1980 permettant de résoudre des problèmes combinatoires de grande taille tels que les problèmes de planification et d'ordonnancement. En programmation par contraintes, on sépare la partie modélisation à l'aide de problèmes de satisfaction de contraintes (ou CSP pour Constraint Satisfaction Problem), de la partie résolution dont la particularité réside dans l'utilisation active des contraintes du problème pour réduire la taille de l'espace des solutions à parcourir (on parle de propagation de contraintes).