Pérovskite (structure)La pérovskite, du nom du minéralogiste russe L. A. Perovski, est une structure cristalline commune à de nombreux oxydes. Ce nom a d'abord désigné le titanate de calcium de formule CaTiO, avant d'être étendu à l'ensemble des oxydes de formule générale ABO présentant la même structure. Les pérovskites présentent un grand intérêt en raison de la très grande variété de propriétés que présentent ces matériaux selon le choix des éléments A et B : ferroélasticité (par exemple ), ferroélectricité (par exemple ), antiferroélectricité (par exemple PbZrO), ferromagnétisme (par exemple YTiO), antiferromagnétisme (LaTiO) La structure pérovskite de plus haute symétrie est une structure de symétrie cubique.
Theory of solar cellsThe theory of solar cells explains the process by which light energy in photons is converted into electric current when the photons strike a suitable semiconductor device. The theoretical studies are of practical use because they predict the fundamental limits of a solar cell, and give guidance on the phenomena that contribute to losses and solar cell efficiency. Photons in sunlight hit the solar panel and are absorbed by semi-conducting materials. Electrons (negatively charged) are knocked loose from their atoms as they are excited.
Cellule solaire à pigment photosensibleUne cellule solaire à pigment photosensible parfois appelée cellules Grätzel (en anglais, Dye-sensitized solar cell ou DSC) est un système photoélectrochimique inspiré de la photosynthèse végétale qui, exposé à la lumière (photons), produit de l’électricité. Elle est souvent désignée par l'acronyme dérivé de son appellation en anglais : dye-sensitized solar cell, DSC, DSSc voire DYSC). Les cellules Grätzel ont été nommées ainsi en référence à son concepteur, Michael Grätzel, de l’École polytechnique fédérale de Lausanne.
Transparent conducting filmTransparent conducting films (TCFs) are thin films of optically transparent and electrically conductive material. They are an important component in a number of electronic devices including liquid-crystal displays, OLEDs, touchscreens and photovoltaics. While indium tin oxide (ITO) is the most widely used, alternatives include wider-spectrum transparent conductive oxides (TCOs), conductive polymers, metal grids and random metallic networks, carbon nanotubes (CNT), graphene, nanowire meshes and ultra thin metal films.
Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
CésiumLe césium est l'élément chimique de numéro atomique 55, de symbole Cs. Dans les conditions standard, le corps simple césium est un métal mou et ductile, blanc ou argenté à doré. Son point de fusion () est proche de la température ambiante et du corps humain (CNTP), à laquelle il peut demeurer à l'état liquide par surfusion ; le césium partage cette propriété avec le gallium et le rubidium, le mercure étant le seul métal pur liquide et s'évaporant à température ambiante.
Test de flammeUn test de flamme, appelé aussi test à la flamme, est un procédé utilisé en chimie pour détecter la présence de certains ions métalliques, basé sur les caractéristiques des spectres d'émission de chaque élément. En général, la couleur des flammes dépend également de la température. Le test consiste à introduire un échantillon de l'élément ou du composé à analyser dans une flamme, non lumineuse et à haute température, puis à observer la couleur qu'on obtient.
TellureLe tellure est l'élément chimique de numéro atomique 52, de symbole Te. Ce quatrième élément du est considéré comme un métalloïde du groupe des chalcogènes. L'élément tellure a été soupçonné plus que découvert en 1782 par Franz-Joseph Müller von Reichenstein dans des minerais d'or de Transylvanie, en particulier la sylvanite. Grâce à Pál Kitaibel, qui a entretenu la flamme de la recherche, il a été isolé par Martin Heinrich Klaproth qui a proposé le nom latin tellurium en 1798. « Tellurium » est encore le nom anglais de l'élément.
GalliumLe gallium est l'élément chimique de numéro atomique 31, de symbole Ga. Il appartient au groupe 13 du tableau périodique ainsi qu'à la famille des métaux pauvres. Le corps simple gallium est un métal. Son point de fusion bas () lui permet de fondre dans la main. Des traces en sont trouvées dans la bauxite et les minerais de zinc. Prédit sous le nom d'éka-aluminium par Mendeleïev, découvert en 1875, son nom lui a été donné par son découvreur, le chimiste français Paul-Émile Lecoq de Boisbaudran.
Biologie structuralevignette|droite|Structure 3D de la myoglobine du grand cachalot (PDB ID 1MBO), la première protéine dont la structure a été résolue par cristallographie aux rayons X par John Kendrew et al. en 1958. La biologie structurale est la branche de la biologie qui étudie la structure et l'organisation spatiale des macromolécules biologiques, principalement les protéines et les acides nucléiques.