Symétrie de translationLa symétrie de translation ou invariance sous les translations est le nom que l'on donne au fait que les lois de la physique (les lois sur la gravité de Newton, sur l'électromagnétisme de Maxwell, sur la relativité d'Einstein) s'écrivent de la même façon en tout point de l'espace. Il y a brisure de symétrie lorsqu'un système ne possède pas la symétrie de translation On peut donner une explication plus précise. Prenons d'abord l'exemple de la loi de la gravitation de Newton. On prend un référentiel de référence qu'on appelle .
Facteur limitantLes facteur limitant est le facteur qui va conditionner la vitesse ou l’amplitude d’un phénomène plurifactoriel à un moment précis. À ce moment-là, tous les autres facteurs permettant la réalisation de ce phénomène sont en excès par rapport au facteur limitant. Le concept de quantité relative est très important, une modification des proportions peut changer la nature du facteur limitant. Cette notion semble être apparue au dans le cadre des recherches agricoles mais est utilisée dans de multiples domaines.
Large numbersLarge numbers are numbers significantly larger than those typically used in everyday life (for instance in simple counting or in monetary transactions), appearing frequently in fields such as mathematics, cosmology, cryptography, and statistical mechanics. They are typically large positive integers, or more generally, large positive real numbers, but may also be other numbers in other contexts. Googology is the study of nomenclature and properties of large numbers.
Symétrie de rotationEn physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes.
Domaine fondamentalGiven a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits. There are many ways to choose a fundamental domain. Typically, a fundamental domain is required to be a connected subset with some restrictions on its boundary, for example, smooth or polyhedral.
Liaison hydrogènevignette|Liaison hydrogène entre des molécules d'eau. La liaison hydrogène ou pont hydrogène est une force intermoléculaire ou intramoléculaire impliquant un atome d'hydrogène et un atome électronégatif comme l'oxygène, l'azote et le fluor. L'intensité d'une liaison hydrogène est intermédiaire entre celle d'une liaison covalente et celle des forces de van der Waals (en général les liaisons hydrogène sont plus fortes que les interactions de van der Waals).
Noms des grands nombresLes noms des grands nombres sont des systèmes de dérivation lexicale qui permettent de nommer des nombres au-delà du langage courant. Dans les langues occidentales modernes, les grands nombres sont généralement nommés d'après l'un ou l'autre des deux systèmes incompatibles suivants : les échelles longue et courte. Ces deux systèmes définissent différemment les mots « billion », « trillion », « quadrillion » L'échelle longue définit aussi les noms « billiard », « trilliard », « quadrilliard » L'usage a souvent varié, même dans un pays donné, suivant les époques.
Precision tests of QEDQuantum electrodynamics (QED), a relativistic quantum field theory of electrodynamics, is among the most stringently tested theories in physics. The most precise and specific tests of QED consist of measurements of the electromagnetic fine-structure constant, α, in various physical systems. Checking the consistency of such measurements tests the theory. Tests of a theory are normally carried out by comparing experimental results to theoretical predictions.
MuonLe muon est, selon le modèle standard de la physique des particules, une particule élémentaire de charge électrique négative, instable. Le muon a pour spin 1/2 et a les mêmes propriétés physiques que l'électron, mis à part sa masse, 207 fois plus grande (, c'est pour cela qu'on l'appelle parfois « électron lourd »). Les muons sont des fermions de la famille des leptons, comme les électrons et les taus. Les muons sont notés μ−. L'antimuon, l'antiparticule associée au muon, est notée μ+ et est chargée positivement.
Rayon de Bohrvignette|Image reprenant le modèle de Bohr. Dans le modèle de Bohr de l'atome d'hydrogène, le rayon de Bohr est la longueur caractéristique séparant l'électron du proton. C'est donc un ordre de grandeur du rayon des atomes. On retrouve ce rayon de Bohr également par l'approche quantique de la description de l'atome, où il représente la valeur moyenne dans le temps de la distance entre l'électron et le proton. L'éponyme du rayon de Bohr est le physicien danois Niels Bohr (-).