Résumé
En physique, la symétrie de rotation, ou invariance par rotation, est la propriété d'une théorie, ou d'un système physique de ne pas être modifié soit par une rotation spatiale quelconque, ou alors par seulement certaines d'entre elles. Lorsque le système est invariant par n'importe quelle rotation d'espace, on parle d'isotropie (du Grec isos (ἴσος, "égal, identique") et tropos (τρόπος, "tour, direction"). Dans ce cas toutes les directions de l'espace sont équivalentes. L'isotropie de l'espace est à l'origine de la conservation du moment cinétique, en application du théorème de Noether. Dans d'autres cas, l'invariance par rotation n'est valable que pour un sous-ensemble des rotations d'espace : par exemple seulement autour d'un certain axe (symétrie axiale) et / ou d'un certain angle (demi-tour, quart de tour...). Certaines directions de l'espace sont alors privilégiées, et l'espace n'est plus isotrope: cette situation se rencontre par exemple dans les cristaux ou encore en présence d'un champ extérieur appliqué. En mathématiques cette propriété s'applique à un objet géométrique mais également à d'autres objets comme un opérateur (par exemple le laplacien de l'espace R est invariant par rotation). vignette|droite|Différence entre la rotation (ici autour de l'axe Oz) envisagée du point de vue actif (à gauche), et passif (à droite). Sur le plan mathématique, il est possible de repérer un point M de l'espace ordinaire par les coordonnées du vecteur dans un repère d'espace Oxyz. Dans un premier temps, il convient de définir l'axe de rotation, comme une direction quelconque de l'espace, notée (Δ), passant par l'origine du repère, et orientée de façon appropriée afin de définir le sens de rotation. Dans la suite l'orientation sera prise selon la règle dites de la main droite, telle que l'angle de rotation noté θ autour de l'axe est positif s'il est dans le sens direct dans tout plan perpendiculaire à l'axe.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.