Déploiement continuLe déploiement continu (continuous deployment, CD) est une approche d'ingénierie logicielle dans laquelle les fonctionnalités logicielles sont livrées fréquemment par le biais de déploiements automatisés. Le déploiement continu diffère de la livraison continue, une approche similaire dans laquelle des fonctionnalités logicielles sont également livrées fréquemment et considérées comme pouvant potentiellement être déployées, mais qui ne le sont pas pour autant (le déploiement restant dans ce cas un processus manuel).
Infinite divisibility (probability)In probability theory, a probability distribution is infinitely divisible if it can be expressed as the probability distribution of the sum of an arbitrary number of independent and identically distributed (i.i.d.) random variables. The characteristic function of any infinitely divisible distribution is then called an infinitely divisible characteristic function. More rigorously, the probability distribution F is infinitely divisible if, for every positive integer n, there exist n i.i.d. random variables Xn1, .
HyperfonctionLa notion d'hyperfonction, due à Mikio Satō, généralise celle de distribution (au sens de Schwartz). Les hyperfonctions sur la droite réelle se définissent comme différences des « valeurs au bord » sur l'axe réel de fonctions holomorphes; elles permettent de trouver des solutions non triviales à des équations différentielles linéaires dont la seule solution est nulle dans l'espace des distributions.
Intégrale de BochnerEn mathématiques, l'intégrale de Bochner, qui porte le nom de son créateur Salomon Bochner, étend la définition de l'intégrale de Lebesgue aux fonctions à valeurs dans un espace de Banach, comme limite d'intégrales de fonctions étagées. Soit (X, Σ, μ) un espace mesuré. On cherche à construire l'intégrale pour des fonctions définies sur X à valeurs dans un espace de Banach B. L'intégrale de Bochner est définie de manière similaire à l'intégrale de Lebesgue.
Théorème fondamental de l'algèbreEn mathématiques, le théorème fondamental de l'algèbre, aussi appelé théorème de d'Alembert-Gauss et théorème de d'Alembert, indique que tout polynôme non constant, à coefficients complexes, admet au moins une racine. En conséquence, tout polynôme à coefficients entiers, rationnels ou encore réels admet au moins une racine complexe, car ces nombres sont aussi des complexes. Une fois ce résultat établi, il devient simple de montrer que sur C, le corps des nombres complexes, tout polynôme P est scindé, c'est-à-dire constant ou produit de polynômes de degré 1.
Factorial moment measureIn probability and statistics, a factorial moment measure is a mathematical quantity, function or, more precisely, measure that is defined in relation to mathematical objects known as point processes, which are types of stochastic processes often used as mathematical models of physical phenomena representable as randomly positioned points in time, space or both. Moment measures generalize the idea of factorial moments, which are useful for studying non-negative integer-valued random variables.
Théorème de Frobenius (géométrie différentielle)Le théorème de Frobenius donne une condition nécessaire et suffisante d'intégrabilité locale d'un système d'équations aux dérivées partielles du premier ordre dont le membre de droite dépend des variables, des inconnues, mais ne dépend pas de dérivées partielles de ces inconnues : un tel système d'équations aux dérivées partielles est appelé un « système de Pfaff ». Les fonctions du second membre sont supposées seulement de classe , ce qui rend impossible l'application du théorème de Cauchy-Kowalevski, qui suppose ces fonctions analytiques.