Ring Modulatorvignette|Schéma d'un ring modulator Le ring modulator (modulateur en anneau) est un effet audio de modulation utilisant un oscillateur pour créer une onde sinusoïdale, qui est ensuite multipliée avec le signal de départ (celui d'une guitare par exemple) pour produire de nouvelles harmoniques. C'est aussi un effet que l'on retrouve sur de nombreux synthétiseurs où un oscillateur est utilisé pour en moduler un autre, ce qui produit des sons de cloche caractéristiques. Pédale d'effet Technologies des musiques
Simulation informatiquevignette|upright=1|Une simulation informatique, sur une étendue de , de l'évolution du typhon Mawar produite par le Modèle météorologique Weather Research and Forecasting La simulation informatique ou numérique est l'exécution d'un programme informatique sur un ordinateur ou réseau en vue de simuler un phénomène physique réel et complexe (par exemple : chute d’un corps sur un support mou, résistance d’une plateforme pétrolière à la houle, fatigue d’un matériau sous sollicitation vibratoire, usure d’un roulem
Analyse de la varianceEn statistique, lanalyse de la variance (terme souvent abrégé par le terme anglais ANOVA : analysis of variance) est un ensemble de modèles statistiques utilisés pour vérifier si les moyennes des groupes proviennent d'une même population. Les groupes correspondent aux modalités d'une variable qualitative (p. ex. variable : traitement; modalités : programme d'entrainement sportif, suppléments alimentaires; placebo) et les moyennes sont calculés à partir d'une variable continue (p. ex. gain musculaire).
Quantification (physique)En physique, la quantification est une procédure permettant de construire une théorie quantique d'un champ à partir d'une théorie classique de ce champ. On parle parfois de seconde quantification pour la distinguer du principe de correspondance permettant de construire la mécanique quantique à partir de la mécanique classique, et que la procédure de quantification généralise. Le terme de quantification du champ est également utilisé, par exemple lorsque l'on parle de la « quantification du champ électromagnétique », dans laquelle les photons sont vus comme les quanta du champ.
Variance (mathématiques)vignette|Exemple d'échantillons pour deux populations ayant la même moyenne mais des variances différentes. La population en rouge a une moyenne de 100 et une variance de 100 (écart-type = SD = standard deviation = 10). La population en bleu a une moyenne de 100 et une variance de (écart-type = SD = 50). En statistique et en théorie des probabilités, la variance est une mesure de la dispersion des valeurs d'un échantillon ou d'une variable aléatoire.
Hypothèse de simulationvignette|The Matrix - Capture d'écran du célèbre économiseur d'écran GLMatrix L'hypothèse de simulation énonce que la réalité observable a pour trame une simulation, semblable à celles de nos ordinateurs, sans que les entités y évoluant puissent la distinguer commodément de la vraie réalité. Cette hypothèse repose elle-même sur le développement de la réalité simulée, actuellement considérée comme une technologie fictive et gravitant autour de nombreuses œuvres de science-fiction, telles Star Trek, eXistenZ, Passé virtuel ou Matrix.
Résidu (statistiques)In statistics and optimization, errors and residuals are two closely related and easily confused measures of the deviation of an observed value of an element of a statistical sample from its "true value" (not necessarily observable). The error of an observation is the deviation of the observed value from the true value of a quantity of interest (for example, a population mean). The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean).
Dilemme biais-varianceEn statistique et en apprentissage automatique, le dilemme (ou compromis) biais–variance est le problème de minimiser simultanément deux sources d'erreurs qui empêchent les algorithmes d'apprentissage supervisé de généraliser au-delà de leur échantillon d'apprentissage : Le biais est l'erreur provenant d’hypothèses erronées dans l'algorithme d'apprentissage. Un biais élevé peut être lié à un algorithme qui manque de relations pertinentes entre les données en entrée et les sorties prévues (sous-apprentissage).