Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Type (informatique)vignette|Présentation des principaux types de données. En programmation informatique, un type de donnée, ou simplement un type, définit la nature des valeurs que peut prendre une donnée, ainsi que les opérateurs qui peuvent lui être appliqués. La plupart des langages de programmation de haut niveau offrent des types de base correspondant aux données qui peuvent être traitées directement — à savoir : sans conversion ou formatage préalable — par le processeur.
Modèle de mélangeIn statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
Algorithme espérance-maximisationL'algorithme espérance-maximisation (en anglais expectation-maximization algorithm, souvent abrégé EM) est un algorithme itératif qui permet de trouver les paramètres du maximum de vraisemblance d'un modèle probabiliste lorsque ce dernier dépend de variables latentes non observables. Il a été proposé par Dempster et al. en 1977. De nombreuses variantes ont par la suite été proposées, formant une classe entière d'algorithmes.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Nonlinear filterIn signal processing, a nonlinear (or non-linear) filter is a filter whose output is not a linear function of its input. That is, if the filter outputs signals R and S for two input signals r and s separately, but does not always output αR + βS when the input is a linear combination αr + βs. Both continuous-domain and discrete-domain filters may be nonlinear. A simple example of the former would be an electrical device whose output voltage R(t) at any moment is the square of the input voltage r(t); or which is the input clipped to a fixed range [a,b], namely R(t) = max(a, min(b, r(t))).
Extraction de racine carréeEn algorithmique et en analyse numérique, l'extraction de racine carrée est le processus qui consiste, étant donné un nombre, à en calculer la racine carrée. Il existe de nombreuses méthodes pour effectuer ce calcul. C'est un cas particulier de la recherche de calcul de la racine n-ième. La racine carrée d'un nombre pouvant être un nombre irrationnel, l'extraction de racine carrée est en général approchée. L'extraction de la racine carrée d'un nombre a est identique à la résolution de l'équation x - a = 0.
Mélangevignette|Mélange hétérogène de soufre et de fer. Un mélange est une association de deux ou plusieurs substances solides, liquides ou gazeuses qui n'interagissent pas chimiquement. Le résultat de l'opération est une préparation aussi appelée « mélange ». Les substances mélangées sont étroitement juxtaposées dans un même espace, chacune gardant ses propriétés physiques et chimiques. Les éléments mélangés peuvent être séparés de nouveau par l’action d'un procédé physique.