Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Filtre de TchebychevLes filtres de Tchebychev sont un type de filtre caractérisé par l'acceptation d'une ondulation, ou bien en bande passante ou bien en bande atténuée. Dans le premier cas, on parle de filtres de Tchebychev de type 1 ou directs, dans le second, de filtres de Tchebychev de type 2 ou inverses. Les filtres qui présentent une ondulation à la fois en bande passante et en bande atténuée sont appelés filtres elliptiques.
Filtre de WienerLe filtre de Wiener est un filtre utilisé pour estimer la valeur désirée d'un signal bruité. Le filtre de Wiener minimise l'erreur quadratique moyenne entre le processus aléatoire estimé et le processus souhaité. Norbert Wiener a d'abord proposé le filtre dans les années 1940, puis publié en 1949. Vers la même époque Andreï Kolmogorov travaillait sur des filtres similaires. Le filtre de Wiener a une variété d'applications de traitement du signal, traitement d'image, des systèmes de contrôle et de la communication numérique.
M-estimateurvignette|M-estimateur En statistique, les M-estimateurs constituent une large classe de statistiques obtenues par la minimisation d'une fonction dépendant des données et des paramètres du modèle. Le processus du calcul d'un M-estimateur est appelé M-estimation. De nombreuses méthodes d'estimation statistiques peuvent être considérées comme des M-estimateurs. Dépendant de la fonction à minimiser lors de la M-estimation, les M-estimateurs peuvent permettre d'obtenir des estimateurs plus robustes que les méthodes plus classiques, comme la méthode des moindres carrés.
Récursion terminaleEn informatique, la récursion terminale, aussi appelée, récursion finale, est un cas particulier de récursivité assimilée à une itération. Une fonction à récursivité terminale est une fonction où l'appel récursif est la dernière instruction à être évaluée. Cette instruction est alors nécessairement « pure », c'est-à-dire qu'elle consiste en un simple appel à la fonction, et jamais à un calcul ou une composition. Par exemple, dans un langage de programmation fictif : fonction récursionTerminale(n) : // ...
Marge d'erreurEn statistiques, la marge d'erreur est une estimation de l'étendue que les résultats d'un sondage peuvent avoir si l'on recommence l'enquête. Plus la marge d'erreur est importante, moins les résultats sont fiables et plus la probabilité qu'ils soient écartés de la réalité est importante. La marge d'erreur peut être calculée directement à partir de la taille de l'échantillon (par exemple, le nombre de personnes sondées) et est habituellement reportée par l'un des trois différents niveaux de l'intervalle de confiance.
Erreur typeLerreur type d'une statistique (souvent une estimation d'un paramètre) est l'écart type de sa distribution d'échantillonnage ou l'estimation de son écart type. Si le paramètre ou la statistique est la moyenne, on parle d'erreur type de la moyenne. La distribution d'échantillonnage est générée par tirage répété et enregistrements des moyennes obtenues. Cela forme une distribution de moyennes différentes, et cette distribution a sa propre moyenne et variance.
Récursion mutuelleEt mathématiques et en informatique, la récursion mutuelle est une récursion où deux (ou plus) fonctions mathématiques ou programmatiques sont définies l'une en termes de l'autre. En informatique, cependant, on utilise plus souvent le terme "récursivité croisée". Par exemple, deux fonctions A(x) and B(x) définies comme suit : La récursion mutuelle est très commune dans le style de programmation fonctionnelle et est souvent utilisée pour la programmation en LISP, Scheme, ML et celle de langages similaires.
Mean percentage errorIn statistics, the mean percentage error (MPE) is the computed average of percentage errors by which forecasts of a model differ from actual values of the quantity being forecast. The formula for the mean percentage error is: where at is the actual value of the quantity being forecast, ft is the forecast, and n is the number of different times for which the variable is forecast. Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result the formula can be used as a measure of the bias in the forecasts.
Robust regressionIn robust statistics, robust regression seeks to overcome some limitations of traditional regression analysis. A regression analysis models the relationship between one or more independent variables and a dependent variable. Standard types of regression, such as ordinary least squares, have favourable properties if their underlying assumptions are true, but can give misleading results otherwise (i.e. are not robust to assumption violations).