LimiteurEn électronique, un limiteur est un circuit qui permet aux signaux inférieurs à une puissance ou un niveau d'entrée de seuil spécifié d'être transmis linéairement tout en atténuant ou en supprimant les pics des signaux plus forts qui dépassent ce seuil. Cette opération sur les signaux dépassant le seuil produit une distorsion du signal. L'écrêtage est un type de compression dynamique du signal. L'écrêtage est la forme radicale de la limitation.
IntermodulationL'intermodulation sert à désigner, en électronique analogique, un défaut de certains amplificateurs qui peut être particulièrement gênant pour les amplificateurs hautes fréquences destinés aux radiocommunications. Les phénomènes d'intermodulation concernent également des défauts de transducteurs, notamment électro-acoustiques, et des phénomènes vibro-acoustiques. Un amplificateur linéaire parfait restitue sur sa sortie un signal de plus grande amplitude, mais de même forme que le signal d'entrée.
Sparse approximationSparse approximation (also known as sparse representation) theory deals with sparse solutions for systems of linear equations. Techniques for finding these solutions and exploiting them in applications have found wide use in , signal processing, machine learning, medical imaging, and more. Consider a linear system of equations , where is an underdetermined matrix and . The matrix (typically assumed to be full-rank) is referred to as the dictionary, and is a signal of interest.
Sparse dictionary learningSparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.
Cluster samplingIn statistics, cluster sampling is a sampling plan used when mutually homogeneous yet internally heterogeneous groupings are evident in a statistical population. It is often used in marketing research. In this sampling plan, the total population is divided into these groups (known as clusters) and a simple random sample of the groups is selected. The elements in each cluster are then sampled. If all elements in each sampled cluster are sampled, then this is referred to as a "one-stage" cluster sampling plan.
Convenience samplingConvenience sampling (also known as grab sampling, accidental sampling, or opportunity sampling) is a type of non-probability sampling that involves the sample being drawn from that part of the population that is close to hand. This type of sampling is most useful for pilot testing. Convenience sampling is not often recommended for research due to the possibility of sampling error and lack of representation of the population. But it can be handy depending on the situation. In some situations, convenience sampling is the only possible option.
Sampling frameIn statistics, a sampling frame is the source material or device from which a sample is drawn. It is a list of all those within a population who can be sampled, and may include individuals, households or institutions. Importance of the sampling frame is stressed by Jessen and Salant and Dillman. In many practical situations the frame is a matter of choice to the survey planner, and sometimes a critical one. [...] Some very worthwhile investigations are not undertaken at all because of the lack of an apparent frame; others, because of faulty frames, have ended in a disaster or in cloud of doubt.
Traitement du signalLe traitement du signal est la discipline qui développe et étudie les techniques de traitement, d'analyse et d' des . Parmi les types d'opérations possibles sur ces signaux, on peut dénoter le contrôle, le filtrage, la compression et la transmission de données, la réduction du bruit, la déconvolution, la prédiction, l'identification, la classification Bien que cette discipline trouve son origine dans les sciences de l'ingénieur (particulièrement l'électronique et l'automatique), elle fait aujourd'hui largement appel à de nombreux domaines des mathématiques, comme la , les processus stochastiques, les espaces vectoriels et l'algèbre linéaire et des mathématiques appliquées, notamment la théorie de l'information, l'optimisation ou encore l'analyse numérique.
Échantillonnage stratifiévignette|Vous prenez un échantillon aléatoire stratifié en divisant d'abord la population en groupes homogènes (semblables en eux-mêmes) (strates) qui sont distincts les uns des autres, c'est-à-dire. Le groupe 1 est différent du groupe 2. Ensuite, choisissez un EAS (échantillon aléatoire simple) distinct dans chaque strate et combinez ces EAS pour former l'échantillon complet. L'échantillonnage aléatoire stratifié est utilisé pour produire des échantillons non biaisés.
Analogiquevignette|Un peson est un instrument de mesure analogique : une longueur est proportionnelle à une force. Le terme analogique indique qu'une chose est suffisamment semblable à une autre, d'un certain point de vue, pour que leur analogie permette de dire de l'une ou de faire avec l'une ce qui s'applique aussi à l'autre. Un appareil, particulièrement un instrument de mesure ou de communication qui représente une grandeur physique par une autre est analogique, comme aussi une méthode de calcul graphique par abaque ou règle à calcul.