Amas ouvertEn astronomie, un amas ouvert est un amas stellaire groupant environ de 100 à étoiles de même âge liées entre elles par la gravitation, et dont le diamètre varie de 1,5 à 15 pc, avec une moyenne de 4 à 5 pc. Les amas ouverts sont peu lumineux et s’observent essentiellement dans notre Galaxie, où ils se situent dans le plan galactique, et dans les galaxies proches : les deux Nuages de Magellan et la galaxie d’Andromède. On pense qu'ils se forment au sein des nuages moléculaires, les grands nuages de gaz et de poussières qui constituent les nébuleuses diffuses.
Amas globulaireEn astronomie, un amas globulaire est un amas stellaire très dense, contenant typiquement une centaine de milliers d'étoiles distribuées dans une sphère dont la taille varie d'une vingtaine à quelques centaines d'années-lumière. Leur densité est ainsi nettement plus élevée que celle des amas ouverts. Les étoiles de ces amas sont généralement des géantes rouges. On compte globulaires dans notre galaxie, la Voie lactée. Mais il en existe sans doute d'autres, qui restent indétectables parce que masqués par le disque galactique.
Naissance des étoilesLa naissance des étoiles ou formation stellaire, voire stellogénèse ou stellogonie, est un domaine de recherche en astrophysique, qui consiste en l'étude des modes de formation des étoiles et des systèmes planétaires. Les étoiles en formation sont fréquemment appelées « étoiles jeunes ». Selon le scénario actuellement admis, confirmé par l'observation, les étoiles se forment en groupe à partir de la contraction gravitationnelle d'une nébuleuse, un nuage de gaz et de poussière, qui se fragmente en plusieurs cœurs protostellaires.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Amas de galaxiesUn amas de galaxies, ou amas galactique, est l'association de plus d'une centaine de galaxies liées entre elles par la gravitation. En dessous de 100, on parle plutôt de groupe de galaxies, même si la frontière entre groupe et amas n'est pas clairement définie. Ces amas se caractérisent par leur forme spécifique (sphérique, symétrique ou quelconque), ainsi que par la répartition et leurs nombres de galaxies (jusqu'à plusieurs milliers). Ils se sont formés il y a 10 milliards d'années et plus.
Amas stellaireUn amas stellaire est une concentration locale d'étoiles d'origine commune et liées entre elles par la gravitation, dans un espace dont les dimensions peuvent atteindre 200 pc. Ces objets sont classés en plusieurs familles selon leur aspect ; ce sont, par compacité croissante : les associations stellaires, les amas ouverts et les amas globulaires. Les amas stellaires se maintiennent par l'attraction gravitationnelle mutuelle de leurs membres.
Racine de l'erreur quadratique moyenneLa racine de l'erreur quadratique moyenne (REQM) ou racine de l'écart quadratique moyen (en anglais, root-mean-square error ou RMSE, et root-mean-square deviation ou RMSD) est une mesure fréquemment utilisée des différences entre les valeurs (valeurs d'échantillon ou de population) prédites par un modèle ou estimateur et les valeurs observées (ou vraies valeurs). La REQM représente la racine carrée du deuxième moment d'échantillonnage des différences entre les valeurs prédites et les valeurs observées.
Formation et évolution des galaxiesL'étude de la formation et de l'évolution des galaxies s'intéresse aux processus ayant abouti à la formation d'un univers hétérogène à partir d'une prémisse homogène, à la formation des premières galaxies (processus appelé galactogenèse), à la façon dont les galaxies changent avec le temps, et aux processus qui ont conduit à la grande variété des structures observées parmi les galaxies proches. C'est l'un des domaines de recherche les plus actifs en astrophysique.
Mean squared prediction errorIn statistics the mean squared prediction error (MSPE), also known as mean squared error of the predictions, of a smoothing, curve fitting, or regression procedure is the expected value of the squared prediction errors (PE), the square difference between the fitted values implied by the predictive function and the values of the (unobservable) true value g. It is an inverse measure of the explanatory power of and can be used in the process of cross-validation of an estimated model.
Mean absolute errorIn statistics, mean absolute error (MAE) is a measure of errors between paired observations expressing the same phenomenon. Examples of Y versus X include comparisons of predicted versus observed, subsequent time versus initial time, and one technique of measurement versus an alternative technique of measurement. MAE is calculated as the sum of absolute errors divided by the sample size: It is thus an arithmetic average of the absolute errors , where is the prediction and the true value.