Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Amas stellaireUn amas stellaire est une concentration locale d'étoiles d'origine commune et liées entre elles par la gravitation, dans un espace dont les dimensions peuvent atteindre 200 pc. Ces objets sont classés en plusieurs familles selon leur aspect ; ce sont, par compacité croissante : les associations stellaires, les amas ouverts et les amas globulaires. Les amas stellaires se maintiennent par l'attraction gravitationnelle mutuelle de leurs membres.
Amas ouvertEn astronomie, un amas ouvert est un amas stellaire groupant environ de 100 à étoiles de même âge liées entre elles par la gravitation, et dont le diamètre varie de 1,5 à 15 pc, avec une moyenne de 4 à 5 pc. Les amas ouverts sont peu lumineux et s’observent essentiellement dans notre Galaxie, où ils se situent dans le plan galactique, et dans les galaxies proches : les deux Nuages de Magellan et la galaxie d’Andromède. On pense qu'ils se forment au sein des nuages moléculaires, les grands nuages de gaz et de poussières qui constituent les nébuleuses diffuses.
Amas globulaireEn astronomie, un amas globulaire est un amas stellaire très dense, contenant typiquement une centaine de milliers d'étoiles distribuées dans une sphère dont la taille varie d'une vingtaine à quelques centaines d'années-lumière. Leur densité est ainsi nettement plus élevée que celle des amas ouverts. Les étoiles de ces amas sont généralement des géantes rouges. On compte globulaires dans notre galaxie, la Voie lactée. Mais il en existe sans doute d'autres, qui restent indétectables parce que masqués par le disque galactique.
Amas de galaxiesUn amas de galaxies, ou amas galactique, est l'association de plus d'une centaine de galaxies liées entre elles par la gravitation. En dessous de 100, on parle plutôt de groupe de galaxies, même si la frontière entre groupe et amas n'est pas clairement définie. Ces amas se caractérisent par leur forme spécifique (sphérique, symétrique ou quelconque), ainsi que par la répartition et leurs nombres de galaxies (jusqu'à plusieurs milliers). Ils se sont formés il y a 10 milliards d'années et plus.
Correlation clusteringClustering is the problem of partitioning data points into groups based on their similarity. Correlation clustering provides a method for clustering a set of objects into the optimum number of clusters without specifying that number in advance. Cluster analysis In machine learning, correlation clustering or cluster editing operates in a scenario where the relationships between the objects are known instead of the actual representations of the objects.
Erreur quadratique moyenneEn statistiques, l’erreur quadratique moyenne d’un estimateur d’un paramètre de dimension 1 (mean squared error (), en anglais) est une mesure caractérisant la « précision » de cet estimateur. Elle est plus souvent appelée « erreur quadratique » (« moyenne » étant sous-entendu) ; elle est parfois appelée aussi « risque quadratique ».
Galaxy groups and clustersGalaxy groups and clusters are the largest known gravitationally bound objects to have arisen thus far in the process of cosmic structure formation. They form the densest part of the large-scale structure of the Universe. In models for the gravitational formation of structure with cold dark matter, the smallest structures collapse first and eventually build the largest structures, clusters of galaxies. Clusters are then formed relatively recently between 10 billion years ago and now.
Single-linkage clusteringIn statistics, single-linkage clustering is one of several methods of hierarchical clustering. It is based on grouping clusters in bottom-up fashion (agglomerative clustering), at each step combining two clusters that contain the closest pair of elements not yet belonging to the same cluster as each other. This method tends to produce long thin clusters in which nearby elements of the same cluster have small distances, but elements at opposite ends of a cluster may be much farther from each other than two elements of other clusters.