Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network
Publications associées (70)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Neuronal firing, synaptic transmission, and its plasticity form the building blocks for processing and storage of information in the brain. It is unknown whether adult human synapses are more efficient in transferring information between neurons than roden ...
Public Library Science2014
How do animals learn to repeat behaviors that lead to the obtention of food or other “rewarding” objects? As a biologically plausible paradigm for learning in spiking neural networks, spike-timing dependent plasticity (STDP) has been shown to perform well ...
Recent experimental data from the rodent cerebral cortex and olfactory bulb indicate that specific connectivity motifs are correlated with short-term dynamics of excitatory synaptic transmission. It was observed that neurons with short-term facilitating sy ...
The ability to learn and perform statistical inference with biologically plausible recurrent networks of spiking neurons is an important step toward understanding perception and reasoning. Here we derive and investigate a new learning rule for recurrent sp ...
Learning to recognize, predict, and generate spatio-temporal patterns and sequences of spikes is a key feature of nervous systems, and essential for solving basic tasks like localization and navigation. How this can be done by a spiking network, however, r ...
In this paper, we propose a method for modeling trajectory patterns with both regional and velocity observations through the probabilistic topic model. By embedding Gaussian models into the discrete topic model framework, our method uses continuous velocit ...
Perceptual learning improves perception through training. Perceptual learning improves with most stimulus types but fails when certain stimulus types are mixed during training (roving). This result is surprising because classical supervised and unsupervise ...
We examine the problem of learning a set of parameters from a distributed dataset. We assume the datasets are collected by agents over a distributed ad-hoc network, and that the communication of the actual raw data is prohibitive due to either privacy cons ...
Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic pla ...
In dynamical models of cortical networks, the recurrent connectivity can amplify the input given to the network in two distinct ways. One is induced by the presence of near-critical eigenvalues in the connectivity matrix W, producing large but slow activit ...