Cercle osculateurdroite|vignette|upright=1.3|Au point M de la courbe rouge, le cercle osculateur (en pointillés) approche mieux la courbe qu'un cercle tangent quelconque (passant par N). Son centre O et son rayon R sont le centre de courbure et le rayon de courbure de la courbe en M. En géométrie différentielle, le cercle osculateur ou cercle de courbure en un point d'une courbe est un objet permettant la description locale de cette courbe.
Déformation élastiqueEn physique, l'élasticité est la propriété d'un matériau solide à retrouver sa forme d'origine après avoir été déformé. La déformation élastique est une déformation réversible. Un matériau solide se déforme lorsque des forces lui sont appliquées. Un matériau élastique retrouve sa forme et sa taille initiales quand ces forces ne s'exercent plus, jusqu'à une certaine limite de la valeur de ces forces. Les tissus biologiques sont également plus ou moins élastiques. Les raisons physiques du comportement élastique diffèrent d'un matériau à un autre.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Repère de DarbouxEn géométrie différentielle, le repère de Darboux est un repère utile pour l'étude des courbes tracées sur une surface de l'espace euclidien orienté à trois dimensions. Il permet la définition des courbures normale et géodésique, et de la torsion géodésique. Il ne faut pas confondre ce repère avec la notion de base de Darboux en géométrie symplectique. On suppose que Σ est une nappe paramétrée de l'espace euclidien orienté E à trois dimensions, de paramétrage donnée par la fonction M(u, v) de classe (k>1) d'un domaine de R2 dans E.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Problème à deux corpsLe problème à deux corps est un modèle théorique important en mécanique, qu'elle soit classique ou quantique, dans lequel sont étudiés les mouvements de deux corps assimilés à des points matériels en interaction mutuelle (conservative), le système global étant considéré comme isolé. Dans cet article, seul sera abordé le problème à deux corps en mécanique classique (voir par exemple l'article atome d'hydrogène pour un exemple en mécanique quantique), d'abord dans le cas général d'un potentiel attractif, puis dans le cas particulier très important où les deux corps sont en interaction gravitationnelle, ou mouvement képlérien, lequel est un sujet important de la mécanique céleste.
Géométrie différentiellevignette|Exemple d'objets étudiés en géométrie différentielle. Un triangle dans une surface de type selle de cheval (un paraboloïde hyperbolique), ainsi que deux droites parallèles. En mathématiques, la géométrie différentielle est l'application des outils du calcul différentiel à l'étude de la géométrie. Les objets d'étude de base sont les variétés différentielles, ensembles ayant une régularité suffisante pour envisager la notion de dérivation, et les fonctions définies sur ces variétés.
Three-body problemIn physics and classical mechanics, the three-body problem is the problem of taking the initial positions and velocities (or momenta) of three point masses and solving for their subsequent motion according to Newton's laws of motion and Newton's law of universal gravitation. The three-body problem is a special case of the n-body problem. Unlike two-body problems, no general closed-form solution exists, as the resulting dynamical system is chaotic for most initial conditions, and numerical methods are generally required.
FluageLe fluage est le phénomène physique qui provoque la déformation irréversible différée (c'est-à-dire non instantanée) d’un matériau soumis à une contrainte constante (notée ), même inférieure à la limite d'élasticité du matériau, pendant une durée suffisante. Le fluage ainsi que la relaxation de contrainte sont deux méthodes en quasi statique de caractérisation des matériaux visqueux (cas du béton). vignette|100px|Essai de fluage à chaud.
Numerical methods for linear least squaresNumerical methods for linear least squares entails the numerical analysis of linear least squares problems. A general approach to the least squares problem can be described as follows. Suppose that we can find an n by m matrix S such that XS is an orthogonal projection onto the image of X. Then a solution to our minimization problem is given by simply because is exactly a sought for orthogonal projection of onto an image of X (see the picture below and note that as explained in the next section the image of X is just a subspace generated by column vectors of X).