Réseau bayésienEn informatique et en statistique, un réseau bayésien est un modèle graphique probabiliste représentant un ensemble de variables aléatoires sous la forme d'un graphe orienté acyclique. Intuitivement, un réseau bayésien est à la fois : un modèle de représentation des connaissances ; une « machine à calculer » des probabilités conditionnelles une base pour des systèmes d'aide à la décision Pour un domaine donné (par exemple médical), on décrit les relations causales entre variables d'intérêt par un graphe.
Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Modèle de mélangeIn statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
Federal enterprise architectureA federal enterprise architecture framework (FEAF) is the U.S. reference enterprise architecture of a federal government. It provides a common approach for the integration of strategic, business and technology management as part of organization design and performance improvement. The most familiar federal enterprise architecture is the enterprise architecture of the Federal government of the United States, the U.S. "Federal Enterprise Architecture" (FEA) and the corresponding U.S. "Federal Enterprise Architecture Framework" (FEAF).
Apprentissage par renforcementEn intelligence artificielle, plus précisément en apprentissage automatique, l'apprentissage par renforcement consiste, pour un agent autonome ( robot, agent conversationnel, personnage dans un jeu vidéo), à apprendre les actions à prendre, à partir d'expériences, de façon à optimiser une récompense quantitative au cours du temps. L'agent est plongé au sein d'un environnement et prend ses décisions en fonction de son état courant. En retour, l'environnement procure à l'agent une récompense, qui peut être positive ou négative.
Biais algorithmiquevignette|Organigramme représentant l'algorithme derrière un moteur de recommandation. Un biais algorithmique est le fait que le résultat d'un algorithme d'apprentissage ne soit pas neutre, loyal ou équitable. Le biais algorithmique peut se produire lorsque les données utilisées pour entraîner un algorithme d'apprentissage automatique reflètent les valeurs implicites des humains impliqués dans la collecte, la sélection, ou l'utilisation de ces données.
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Architecture d'entrepriseL'architecture d'entreprise est une école visant à représenter de manière systémique l'entreprise, sous forme de composants. Ainsi le découpage en composants permet à l'entreprise de faciliter les assemblages. Les méthodes d'architecture visent à mettre en place des principes ainsi qu'un cadre d'architecture dit "de référence". C'est une démarche visant à aligner avec la stratégie d'entreprise l'ensemble des couches de l'entreprise,(Métier, fonctionnelle, applicative, technique, ...).
CorpusUn corpus est un ensemble de documents, artistiques ou non (textes, s, vidéos), regroupés dans une optique précise. On peut utiliser des corpus dans plusieurs domaines : études littéraires, linguistiques, scientifiques, philosophie La branche de la linguistique qui se préoccupe plus spécifiquement des corpus s'appelle logiquement la linguistique de corpus. Elle est liée au développement des systèmes informatiques, en particulier à la constitution de bases de données textuelles.