Algorithme de triUn algorithme de tri est, en informatique ou en mathématiques, un algorithme qui permet d'organiser une collection d'objets selon une relation d'ordre déterminée. Les objets à trier sont des éléments d'un ensemble muni d'un ordre total. Il est par exemple fréquent de trier des entiers selon la relation d'ordre usuelle « est inférieur ou égal à ». Les algorithmes de tri sont utilisés dans de très nombreuses situations. Ils sont en particulier utiles à de nombreux algorithmes plus complexes dont certains algorithmes de recherche, comme la recherche dichotomique.
In-place algorithmIn computer science, an in-place algorithm is an algorithm that operates directly on the input data structure without requiring extra space proportional to the input size. In other words, it modifies the input in place, without creating a separate copy of the data structure. An algorithm which is not in-place is sometimes called not-in-place or out-of-place. In-place can have slightly different meanings. In its strictest form, the algorithm can only have a constant amount of extra space, counting everything including function calls and pointers.
ParameterA parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. Parameter has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition.
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
SortingSorting refers to ordering data in an increasing or decreasing manner according to some linear relationship among the data items. ordering: arranging items in a sequence ordered by some criterion; categorizing: grouping items with similar properties. Ordering items is the combination of categorizing them based on equivalent order, and ordering the categories themselves. In , arranging in an ordered sequence is called "sorting". Sorting is a common operation in many applications, and efficient algorithms have been developed to perform it.
Algorithme de tri externeUn algorithme de tri est dit externe lorsqu'il permet de trier des entrées trop grandes pour être contenues en intégralité dans la mémoire principale d'un ordinateur. En règle générale, la mémoire principale est la mémoire vive, et l'algorithme recourt donc à l'usage d'une mémoire située plus bas dans la hiérarchie mémoire, comme un disque dur. Recourir à la mémoire externe permet d'arriver à trier des volumes de données plus importants mais induit de nouvelles difficultés, le temps d'accès aux données étant beaucoup plus long.
Tri à bullesvignette|Visualisation statique du tri : les étapes vont de gauche à droite. À chaque étape une permutation est faite. La couleur la plus foncée a le plus de valeur et trouve sa place définitive (en bas) en premier. Le tri à bulles ou tri par propagation est un algorithme de tri. Il consiste à comparer répétitivement les éléments consécutifs d'un tableau, et à les permuter lorsqu'ils sont mal triés. Il doit son nom au fait qu'il déplace rapidement les plus grands éléments en fin de tableau, comme des bulles d'air qui remonteraient rapidement à la surface d'un liquide.
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Tri par paquetsLe tri par paquets est un algorithme de tri qui fonctionne sur des nombres réels appartenant à un intervalle borné fixé à l'avance. Le principe de ce tri consiste à partitionner régulièrement l'intervalle d'entrée en autant de sous-intervalles que l'entrée comporte d'éléments à trier, et à distribuer les données selon leur valeurs en autant de paquets correspondant à ces sous-intervalles. Les paquets sont alors triés séparément à l'aide d'un autre algorithme de tri.