Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
A non-intrusive reduced-basis (RB) method is proposed for parametrized unsteady flows. A set of reduced basis functions are extracted from a collection of high-fidelity solutions via a proper orthogonal decomposition (POD), and the coefficients of the reduced basis functions are recovered by a feedforward neural network (NN). As a regression model of the RB method for unsteady flows, the neural network approximates the map between the time/parameter value and the projection coefficients of the high-fidelity solution onto the reduced space. The generation of the reduced basis and the training of the NN are accomplished in the offline stage, thus the RB solution of a new time/parameter value can be recovered via direct outputs of the NN in the online stage. Due to its non-intrusive nature, the proposed RB method, referred as the POD-NN, fully decouples the online stage and the high-fidelity scheme, and is thus able to provide fast and reliable solutions of complex unsteady flows. To test this assertion, the POD-NN method is applied to the reduced order modeling (ROM) of the quasi-one dimensional Continuously Variable Resonance Combustor (CVRC) flow. Numerical results demonstrate the efficiency and robustness of the POD-NN method.
Jean-Paul Richard Kneib, Emma Elizabeth Tolley, Tianyue Chen, Michele Bianco
Alexander Mathis, Alberto Silvio Chiappa, Alessandro Marin Vargas, Axel Bisi
The capabilities of deep learning systems have advanced much faster than our ability to understand them. Whilst the gains from deep neural networks (DNNs) are significant, they are accompanied by a growing risk and gravity of a bad outcome. This is tr ...