Isolant topologiqueUn isolant topologique est un matériau ayant une structure de bande de type isolant mais qui possède des états de surface métalliques. Ces matériaux sont donc isolants "en volume" et conducteurs en surface. En 2007, cet état de matière a été réalisé pour la première fois en 2D dans un puits quantique de (Hg,Cd)Te . Le BiSb (antimoniure de bismuth) est le premier isolant topologique 3D à être réalisé. La spectroscopie de photoélectrons résolue en angle a été l'outil principal qui a servi à confirmer l'existence de l'état isolant topologique en 3D.
Weyl semimetalWeyl fermions are massless chiral fermions embodying the mathematical concept of a Weyl spinor. Weyl spinors in turn play an important role in quantum field theory and the Standard Model, where they are a building block for fermions in quantum field theory. Weyl spinors are a solution to the Dirac equation derived by Hermann Weyl, called the Weyl equation. For example, one-half of a charged Dirac fermion of a definite chirality is a Weyl fermion. Weyl fermions may be realized as emergent quasiparticles in a low-energy condensed matter system.
Weyl equationIn physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions. None of the elementary particles in the Standard Model are Weyl fermions. Previous to the confirmation of the neutrino oscillations, it was considered possible that the neutrino might be a Weyl fermion (it is now expected to be either a Dirac or a Majorana fermion).
Mécanique relativisteEn physique, la mécanique relativiste se rapporte à la mécanique compatible avec la relativité restreinte (RR) et la relativité générale (RG). Elle fournit une description non-quantique d'un système de particules, ou d'un liquide, dans le cas où les vitesses de déplacement des objets sont comparables à la vitesse de la lumière c. En conséquence, la mécanique classique est étendue correctement aux particules se déplaçant à des vitesses et des énergies élevées, et assure une inclusion cohérente de l'électromagnétisme avec la mécanique des particules.
Mécanique quantique relativisteEn physique théorique, la mécanique quantique relativiste est une théorie qui tente d’unifier les postulats de la mécanique quantique non-relativiste et le principe de relativité restreinte afin de décrire la dynamique quantique d'une particule relativiste, i.e. dont la vitesse classique n'est pas très petite devant la vitesse de la lumière dans le vide. Les équations d'ondes relativistes qui généralisent l'équation de Schrödinger sont : l'équation de Klein-Gordon, qui décrit une particule massive de spin 0 ; l'équation de Dirac, qui décrit une particule massive de spin 1/2.
Physique des particulesLa physique des particules ou la physique subatomique est la branche de la physique qui étudie les constituants élémentaires de la matière et les rayonnements, ainsi que leurs interactions. On l'appelle aussi parfois physique des hautes énergies car de nombreuses particules élémentaires, instables, n'existent pas à l'état naturel et peuvent seulement être détectées lors de collisions à hautes énergies entre particules stables dans les accélérateurs de particules.
Quantum spin liquidIn condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entanglement, fractionalized excitations, and absence of ordinary magnetic order. The quantum spin liquid state was first proposed by physicist Phil Anderson in 1973 as the ground state for a system of spins on a triangular lattice that interact antiferromagnetically with their nearest neighbors, i.
Relativistic wave equationsIn physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT.
Cyclotronvignette|redresse=2|Un électroaimant de cyclotron au Lawrence Hall of Science. Les parties noires sont en acier et se prolongent sous terre. Les bobines de l'aimant sont situées dans les cylindres blancs. La chambre à vide se situerait dans l’espace horizontal entre les pôles de l'aimant. vignette|droite|upright=1.25|Cœur du premier cyclotron belge, construit à Heverlee en 1947. Le cyclotron est un type d’accélérateur de particules inventé par Ernest Orlando Lawrence et Milton Stanley Livingston de l'Université de Californie à Berkeley au début des années 1930.
Zetta-particuleLes zetta-particules (ou rayons cosmiques d'ultra haute énergie) sont des particules dont l'énergie estimée est de l'ordre du (, soit environ ). Les records actuels d'énergie pour une particule observée sont : par le Fly's Eye à l'Université de l'Utah, une zetta-particule de en octobre 1991. Probablement un proton ou un noyau atomique léger qui possédait une énergie équivalente à celle d'une balle de tennis frappée par un bon joueur. par l'Akeno Giant Air Shower Array (AGASA), une douche de particules résultant d'une zetta-particule de le .