Quantification (logique)vignette|Symboles mathématiques des deux quantificateurs logiques les plus courants.|236px En mathématiques, les expressions « pour tout » (ou « quel que soit ») et « il existe », utilisées pour formuler des propositions mathématiques dans le calcul des prédicats, sont appelées des quantifications. Les symboles qui les représentent en langage formel sont appelés des quantificateurs (ou autrefois des quanteurs). La quantification universelle (« pour tout ... » ou « quel que soit ... ») se dénote par le symbole ∀ (un A à l'envers).
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Locomotive à turbine à gazLes locomotives à turbine à gaz ont été mises au point dans plusieurs pays au . Elles utilisent une turbine à gaz analogue à celle que l'on rencontre dans les avions ou les hélicoptères pour entraîner un axe de sortie. La transmission rencontre alors à peu près les mêmes contraintes que pour les locomotives Diesel et on observe les mêmes solutions : transmission mécanique, électrique (semblable à la solution Diesel-électrique) ou hydraulique.
SpiraleEn géométrie plane, les spirales forment une famille de courbes d'allure similaire : une partie de la courbe semble s'approcher d'un point fixe tout en tournant autour de lui, tandis que l'autre extrémité semble s'en éloigner. Une courbe plane dont l'équation polaire est du type où f est une fonction monotone est une spirale. On trouve aussi le terme de spirale pour des courbes en dimension trois qui tournent autour d'un axe en s'en éloignant ou s'en rapprochant comme les ou en restant à distance fixe comme l'hélice circulaire.
Spirale d'orvignette|La spirale d'or est autosimilaire, elle se répète à l'infini lorsqu'elle est agrandie. thumb|La spirale de Fibonacci (courbe verte constituée de l'ensemble de quart de cercles tangents à chaque carré) est une approximation de la spirale d'or (courbe rouge). Les parties jaunes indiquent les portions où les deux courbes se superposent. Les côtés des carrés successifs respectent la proportion d'or. En géométrie, une spirale d'or est une spirale logarithmique avec un facteur de croissance de , appelé nombre d'or.
Spirale logarithmiqueUne spirale logarithmique est une courbe dont l'équation polaire est de la forme : où a et b sont des réels strictement positifs (b différent de 1) et la fonction exponentielle de base b. Cette courbe étudiée au a suscité l'admiration de Jacques Bernoulli pour ses propriétés d'invariance. On la trouve dans la nature, par exemple dans la croissance de coquillages ou pour la disposition des graines de tournesol. Le nom de spirale logarithmique lui est donné par Pierre Varignon.