Théorème de Kőnig (théorie des graphes)vignette|Exemple d'un graphe biparti avec un couplage maximum (en bleu) et une couverture de sommets minimale (en rouge), tous les deux de taille 6. Le théorème de Kőnig est un résultat de théorie des graphes qui dit que, dans un graphe biparti, la taille du transversal minimum (i. e. de la couverture par sommets minimum) est égale à la taille du couplage maximum. La version pondérée du théorème est appelée théorème de Kőnig-. Un couplage d'un graphe G est un sous-ensemble d'arêtes de G deux-à-deux non adjacentes ; un sommet est couplé s'il est extrémité d'une arête du couplage.
Structure d'incidencevignette| Exemples de structures d'incidence: Exemple 1: Points et droites du plan euclidien Exemple 2: Points et cercles Exemple 3: Structure définie par une matrice d'incidence. En mathématiques, une structure d'incidence est toute composition de deux types d'objets dans le plan euclidien : des points ou l'équivalent de points et des droites ou l'équivalent de droites et d'une seule relation possible entre ces types, les autres propriétés étant ignorées et la structure pouvant ainsi se représenter par une matrice.
Partition d'un ensemblevignette|Les 52 partitions d'un ensemble à 5 éléments. Les points noirs représentent les éléments de l'ensemble. Une région colorée correspond à un bloc de la partition qui regroupe plusieurs points noirs. Un point noir isolé signifie que cet élément appartient à un bloc qui est un singleton. En mathématiques, une partition d'un ensemble X est un ensemble de parties non vides de X deux à deux disjointes et dont l'union est X. Soit un ensemble X.
Nerf (théorie des catégories)En mathématiques, et plus particulièrement en théorie des catégories, le nerf d'une petite catégorie est un ensemble simplicial construit à partir des objets et des morphismes de . La réalisation géométrique de cet ensemble simplicial est un espace topologique, appelé l'espace classifiant de la catégorie . Ces objets étroitement liés peuvent fournir des informations sur certains catégories familières et utiles à l'aide de la topologie algébrique, le plus souvent la théorie de l'homotopie.
Chain (algebraic topology)In algebraic topology, a -chain is a formal linear combination of the -cells in a cell complex. In simplicial complexes (respectively, cubical complexes), -chains are combinations of -simplices (respectively, -cubes), but not necessarily connected. Chains are used in homology; the elements of a homology group are equivalence classes of chains. For a simplicial complex , the group of -chains of is given by: where are singular -simplices of . Note that any element in not necessary to be a connected simplicial complex.
Triangulation (géométrie)En géométrie, une triangulation est une partition d'un objet en un ensemble de simplexes. En particulier dans le plan, une triangulation est composée de triangles. Une triangulation est un complexe simplicial. Une triangulation d'un ensemble est une partition de en simplexes de dimension (n+1) telle que : l'intersection de deux simplexes est soit une face commune aux deux simplexes, soit vide tout ensemble borné de coupe un nombre fini de simplexes de T l'union des simplexes correspond à Un problème de géométrie est de trouver rapidement une triangulation d'un polygone, c'est-à-dire un ensemble de triangles disjoints dont l'union recouvre le polygone.