Economic analysis of climate changeThe economic analysis of climate change explains how economic thinking, tools and techniques are applied to calculate the magnitude and distribution of damage caused by climate change. It also informs the policies and approaches for mitigation and adaptation to climate change from global to household scales. This topic is also inclusive of alternative economic approaches, including ecological economics and degrowth. Economic analysis of climate change is considered challenging as it is a long-term problem and has substantial distributional issues within and across countries.
Effects of climate change on agricultureThe effects of climate change on agriculture can result in lower crop yields and nutritional quality due to drought, heat waves and flooding as well as increases in pests and plant diseases. Climate change impacts are making it harder for agricultural activities to meet human needs. The effects are unevenly distributed across the world and are caused by changes in temperature, precipitation and atmospheric carbon dioxide levels due to global climate change. In 2019, millions were already suffering from food insecurity due to climate change.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
Hydrocarbon explorationHydrocarbon exploration (or oil and gas exploration) is the search by petroleum geologists and geophysicists for deposits of hydrocarbons, particularly petroleum and natural gas, in the Earth's crust using petroleum geology. Visible surface features such as oil seeps, natural gas seeps, pockmarks (underwater craters caused by escaping gas) provide basic evidence of hydrocarbon generation (be it shallow or deep in the Earth). However, most exploration depends on highly sophisticated technology to detect and determine the extent of these deposits using exploration geophysics.
Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Design de produitsthumb|Fauteuils design Le design de produits est une conception d'objets usuels répondant à des fonctions au service de l'homme. Plusieurs établissements proposent aujourd'hui un DNMADE (anciennement BTS) design de produits. Design et marketing : Fondements et Méthodes, L'Harmattan, 2007, p.383 Jean-Jacques Urvoy, Sophie Sanchez, Le designer: De la conception à la mise en place du projet, Eyrolles, 2011, p.127 École Boulle, les ateliers et formations au design de produits École supérieure de Design des Lan
Physical neural networkA physical neural network is a type of artificial neural network in which an electrically adjustable material is used to emulate the function of a neural synapse or a higher-order (dendritic) neuron model. "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based approaches. More generally the term is applicable to other artificial neural networks in which a memristor or other electrically adjustable resistance material is used to emulate a neural synapse.
User experience designUser experience design (UX design, UXD, UED, or XD) is the process of defining the experience a user would go through when interacting with a company, its services, and its products. Design decisions in UX design are often driven by research, data analysis, and test results rather than aesthetic preferences and opinions. Unlike user interface design, which focuses solely on the design of a computer interface, UX design encompasses all aspects of a user's perceived experience with a product or website, such as its usability, usefulness, desirability, brand perception, and overall performance.
Engineering design processThe engineering design process, also known as the engineering method, is a common series of steps that engineers use in creating functional products and processes. The process is highly iterative - parts of the process often need to be repeated many times before another can be entered - though the part(s) that get iterated and the number of such cycles in any given project may vary. It is a decision making process (often iterative) in which the basic sciences, mathematics, and engineering sciences are applied to convert resources optimally to meet a stated objective.