Multiplication and repeated additionIn mathematics education, there was a debate on the issue of whether the operation of multiplication should be taught as being a form of repeated addition. Participants in the debate brought up multiple perspectives, including axioms of arithmetic, pedagogy, learning and instructional design, history of mathematics, philosophy of mathematics, and computer-based mathematics. In the early 1990s Leslie Steffe proposed the counting scheme children use to assimilate multiplication into their mathematical knowledge.
Forme volumeEn géométrie différentielle, une forme volume généralise la notion de déterminant aux variétés différentielles. Elle définit une mesure sur la variété, permet le calcul des volumes généralisés, et la définition générale des orientations. Une forme volume se définit comme une forme différentielle de degré maximal, nulle en aucun point. Pour qu'une variété admette une forme volume, il faut et il suffit qu'elle soit orientable. Dans ce cas, il en existe une infinité.
Produit libreEn mathématiques, et plus particulièrement en théorie des groupes, le produit libre de deux groupes G et H est un nouveau groupe, noté G∗H, qui contient G et H comme sous-groupes, est engendré par les éléments de ces sous-groupes, et constitue le groupe « le plus général » possédant ces propriétés. Le produit libre est le coproduit, ou « somme », dans la catégorie des groupes, c'est-à-dire que la donnée de deux morphismes, de G et H dans un même groupe K, équivaut à celle d'un morphisme de G∗H dans K.
NablaNabla, noté ou selon les conventions utilisées, est un symbole mathématique pouvant aussi bien désigner le gradient d'une fonction en analyse vectorielle qu'une connexion de Koszul en géométrie différentielle. Les deux notions sont reliées, ce qui explique l'utilisation d'un même symbole. En physique, il est utilisé en dimension 3 pour représenter aisément plusieurs opérateurs vectoriels, couramment utilisés en électromagnétisme et en dynamique des fluides.
Théorème de SchwarzLe théorème de Schwarz, de Clairaut ou de Young est un théorème d'analyse portant sur les dérivées partielles secondes d'une fonction de plusieurs variables. Il apparaît pour la première fois dans un cours de calcul différentiel donné par Weierstrass en 1861 auquel assistait alors Hermann Schwarz à Berlin. La symétrie de la hessienne signifie que le résultat d'une dérivation partielle à l'ordre 2 par rapport à deux variables ne dépend pas de l'ordre dans lequel se fait la dérivation par rapport à ces deux variables : Ce théorème est parfois appelé par les anglophones (théorème de Young), nom qui désigne également une extension aux dérivées d'ordre supérieur.
Application transposéeEn mathématiques et plus précisément en algèbre linéaire, l'application transposée d'une application linéaire entre deux espaces vectoriels est l'application entre leurs duals définie par : ou encore, si est le crochet de dualité de : La forme linéaire résultante est nommée application transposée de le long de . Cette définition se généralise à des K-modules à droite sur un anneau (non nécessairement commutatif), en se souvenant que le dual d'un K-module à droite est un K-module à gauche, ou encore un module à droite sur l'anneau opposé K.
Inhomogeneous electromagnetic wave equationIn electromagnetism and applications, an inhomogeneous electromagnetic wave equation, or nonhomogeneous electromagnetic wave equation, is one of a set of wave equations describing the propagation of electromagnetic waves generated by nonzero source charges and currents. The source terms in the wave equations make the partial differential equations inhomogeneous, if the source terms are zero the equations reduce to the homogeneous electromagnetic wave equations. The equations follow from Maxwell's equations.
Matrix calculusIn mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices. It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities. This greatly simplifies operations such as finding the maximum or minimum of a multivariate function and solving systems of differential equations.