Publication

Neuroprosthetics to support impaired hand functions: A multidisciplinary approach combining brain-machine interfaces and wearable exoskeletons

Luca Randazzo
2018
Thèse EPFL
Résumé

Neuroprosthetics, the discipline that aims at interfacing neural systems to artificially engineered devices, has witnessed in recent years important advancements towards the ultimate goal of augmenting and restoring human functions through technology and artificial systems.

Research in this field covers a wide range of efforts, from advancing our basic understanding of the neural processes involved into human sensory, motor and cognitive functions, to developing artificial intelligence algorithms for their decoding, to the physical interfacing between artificial devices and the human nervous system and biomechanics. Ultimately, this discipline aims at fusing these systems in order to restore, replace and rehabilitate lost and impaired functions due to motor disabling conditions or traumatic accidents.

In this thesis, I present a multidisciplinary approach that aimed at developing a neuroprosthesis for the assistance and restoration of hand functions impaired by neurological disorders or traumatic accidents, such as cerebrovascular accidents and spinal cord injuries. These efforts encompassed the conceptualization and development of a robotic hand exoskeleton and brain-machine interface (BMI) algorithms for its control. Specifically, this thesis focused on the design, development and testing of (i) a novel mechatronic hand exoskeleton to assist hand motions within domestic and clinical settings, (ii) non-invasive BMI approaches based on electroencephalography (EEG) to decode neural correlates of intended hand movements, and on (iii) the closed-loop integration of the proposed exoskeleton and BMI for the sake of providing continuous feedback about ongoing neural modulations through hand motions and to trigger sensorimotor rehabilitation within clinical scenarios.

Results showed that the proposed mechatronic system can successfully control hand opening and closing within a fully wearable, portable and lightweight package. The system was tested with users who suffered from motor disabling impairments, showing that it could help them in performing several activities of daily living for the first time since their accidents. From a brain-machine interfacing perspective, this work shows how imagined hand movements can be decoded, through EEG, in parallel with exoskeleton-induced motions, with important implications for the development of more embodied human-machine interaction protocols. Finally, this work shows how the closed-loop control of exoskeleton motions by means of the decoded ongoing neural activity enhances the discriminability of sensorimotor neural patterns and improves the performance of the brain-machine control channel.

Overall, the results presented here represent important advancements within the field of neuroprosthetics, with interesting implications for the development of assistive exoskeletal technologies and non-invasive brain-machine interfaces aimed at controlling such systems in clinical or domestic settings, for both assistive and neurorehabilitative purposes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (44)
Interface neuronale directe
thumb|250px|Schéma d'une interface neuronale directe. Une interface neuronale directe - abrégée IND ou BCI ou encore ICM (interface cerveau-machine, ou encore interface cerveau-ordinateur) est une interface de communication directe entre un cerveau et un dispositif externe (un ordinateur, un système électronique...). Ces systèmes peuvent être conçus dans le but d'étudier le cerveau, d'assister, améliorer ou réparer des fonctions humaines de cognition ou d'action défaillantes. L'IND peut être unidirectionnelle ou bidirectionnelle.
Rythme cérébral
Un rythme cérébral (appelé aussi activité neuro-électrique) désigne l'oscillation électromagnétique émise par le cerveau des êtres humains, mais également de tout être vivant. Le cortex frontal qui permet la cognition, la logique et le raisonnement est composé de neurones qui sont reliés entre eux par des synapses permettant la neurotransmission. Mesurables en volt et en hertz, ces ondes sont de très faible amplitude : de l'ordre du microvolt (chez l'être humain), elles ne suivent pas toujours une sinusoïde régulière.
Neuroprosthetics
Neuroprosthetics (also called neural prosthetics) is a discipline related to neuroscience and biomedical engineering concerned with developing neural prostheses. They are sometimes contrasted with a brain–computer interface, which connects the brain to a computer rather than a device meant to replace missing biological functionality. Neural prostheses are a series of devices that can substitute a motor, sensory or cognitive modality that might have been damaged as a result of an injury or a disease.
Afficher plus
Publications associées (267)

Organ Neuroprosthetics: Connecting Transplanted and Artificial Organs with the Nervous System

Silvestro Micera

Implantable neural interfaces with the central and peripheral nervous systems are currently used to restore sensory, motor, and cognitive functions in disabled people with very promising results. They have also been used to modulate autonomic activities to ...
Wiley2024

Unraveling behavior and cortical signals to guide the development of soft neuroprostheses for auditory restoration and spreading depolarization

Emilie Cornelia Maria Revol

Neuroprostheses have been used clinically for decades, to help restore or preserve brain functions, when pharmaceutical treatments are inefficient. Although great progress in the field has been made over the years to interface with the nervous system, surf ...
EPFL2024

Biophysically accurate and machine learning-based surrogate models to optimize neuroprosthesis design and operation

Simone Romeni

Electrical stimulation of the nervous system has emerged as a promising assistive technology in case of many injuries and illnesses across various parts of the nervous system. In particular, the invasive neuromodulation of the peripheral nervous system see ...
EPFL2024
Afficher plus
MOOCs associés (32)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.