Neuroprosthetics (also called neural prosthetics) is a discipline related to neuroscience and biomedical engineering concerned with developing neural prostheses. They are sometimes contrasted with a brain–computer interface, which connects the brain to a computer rather than a device meant to replace missing biological functionality. Neural prostheses are a series of devices that can substitute a motor, sensory or cognitive modality that might have been damaged as a result of an injury or a disease. Cochlear implants provide an example of such devices. These devices substitute the functions performed by the eardrum and stapes while simulating the frequency analysis performed in the cochlea. A microphone on an external unit gathers the sound and processes it; the processed signal is then transferred to an implanted unit that stimulates the auditory nerve through a microelectrode array. Through the replacement or augmentation of damaged senses, these devices are intended to improve the quality of life for those with disabilities. These implantable devices are also commonly used in animal experimentation as a tool to aid neuroscientists in developing a greater understanding of the brain and its functioning. By wirelessly monitoring the brain's electrical signals sent out by electrodes implanted in the subject's brain, the subject can be studied without the device affecting the results. Accurately probing and recording the electrical signals in the brain would help better understand the relationship among a local population of neurons that are responsible for a specific function. Neural implants are designed to be as small as possible in order to be minimally invasive, particularly in areas surrounding the brain, eyes, or cochlea. These implants typically communicate with their prosthetic counterparts wirelessly. Additionally, power is currently received through wireless power transmission through the skin. The tissue surrounding the implant is usually highly sensitive to temperature rise, meaning that power consumption must be minimal in order to prevent tissue damage.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (18)
BIO-467: Scientific literature analysis in bioengineering
Students are given the means to dig effectively into modern scientific literature in the multidisciplinary field of bioengineering. The method relies on granting sufficient time to become familiar wi
CS-432: Computational motor control
The course gives (1) a review of different types of numerical models of control of locomotion and movement in animals, from fish to humans, (2) a presentation of different techniques for designing mod
NX-421: Neural signals and signal processing
Understanding, processing, and analysis of signals and images obtained from the central and peripheral nervous system
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.