Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Condition aux limites mêléeEn mathématiques, une condition aux limites mêlée ou mixte correspond à la juxtaposition de différentes conditions aux limites sur différentes parties du bord (ou frontière) du domaine dans lequel est posée une équation aux dérivées partielles ou une équation différentielle ordinaire. Par exemple, si l'on considère les vibrations d'une corde élastique de longueur L se déplaçant à une vitesse c dont une extrémité (en 0) est fixe, et l'autre (en L) est attachée à un anneau oscillant librement le long d'une tige droite, on a alors une équation sur un intervalle [0,L].
Fondation superficielleLes fondations superficielles sont un type de fondation utilisé lors d'une construction sur un terrain stable et qui, contrairement aux fondations profondes et semi-profondes, ne s'enfonce que légèrement dans le sol. Elles prennent le plus souvent la forme de plots de fondation ou d'une semelle. Il s'agit du type de fondation la plus utilisée pour la construction d'habitations. La profondeur des fondations superficielles n'excède pas , dans le cas opposé, on parle de puits ou de pieux.
Évaluation formativeLes concepts d’évaluation formative et sommative ont été apportés par Michael Scriven en 1967, dans le contexte de l’évaluation de programmes éducatifs (curriculum evaluation). Pour Scriven, une évaluation formative devait permettre à un établissement scolaire d’estimer la capacité de ses programmes scolaires à atteindre leurs objectifs, de façon à guider les choix de l’école pour les améliorer progressivement, au contraire d’une évaluation sommative qui cherche à poser un jugement final sur les programmes : « marchent-ils » ou pas ? Et en conséquence, faut-il les maintenir, les étendre ou les abandonner ? Benjamin Bloom reprend dans les années suivantes cette distinction pour l’appliquer au processus d’apprentissage, notamment dans son ouvrage Handbook on formative and summative evaluation of student learning.
Évaluation sommativeLes concepts d’évaluation sommative et formative ont été apportés par Michael Scriven en 1967. Selon Scriven, une évaluation formative devait permettre à un établissement scolaire d’estimer la capacité de ses programmes scolaires à atteindre leurs objectifs, de façon à guider les choix de l’école pour les améliorer progressivement, au contraire d’une évaluation sommative qui cherche à poser un jugement final sur les programmes : « marchent-ils » ou pas ? Et en conséquence, faut-il les maintenir, les étendre ou les abandonner ? Pour Scriven, toutes les techniques d’évaluation peuvent être sommatives, mais seules certaines sont formatives.
Electronic assessmentElectronic assessment, also known as digital assessment, e-assessment, online assessment or computer-based assessment, is the use of information technology in assessment such as educational assessment, health assessment, psychiatric assessment, and psychological assessment. This covers a wide range of activities ranging from the use of a word processor for assignments to on-screen testing. Specific types of e-assessment include multiple choice, online/electronic submission, computerized adaptive testing such as the Frankfurt Adaptive Concentration Test, and computerized classification testing.