Simple linear regressionIn statistics, simple linear regression is a linear regression model with a single explanatory variable. That is, it concerns two-dimensional sample points with one independent variable and one dependent variable (conventionally, the x and y coordinates in a Cartesian coordinate system) and finds a linear function (a non-vertical straight line) that, as accurately as possible, predicts the dependent variable values as a function of the independent variable. The adjective simple refers to the fact that the outcome variable is related to a single predictor.
Analyse fonctionnelle (mathématiques)L'analyse fonctionnelle est la branche des mathématiques et plus particulièrement de l'analyse qui étudie les espaces de fonctions. Elle prend ses racines historiques dans l'étude des transformations telles que la transformation de Fourier et dans l'étude des équations différentielles ou intégro-différentielles. Le terme fonctionnelle trouve son origine dans le cadre du calcul des variations, pour désigner des fonctions dont les arguments sont des fonctions.
Bayesian multivariate linear regressionIn statistics, Bayesian multivariate linear regression is a Bayesian approach to multivariate linear regression, i.e. linear regression where the predicted outcome is a vector of correlated random variables rather than a single scalar random variable. A more general treatment of this approach can be found in the article MMSE estimator. Consider a regression problem where the dependent variable to be predicted is not a single real-valued scalar but an m-length vector of correlated real numbers.
Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.
Espace de suites ℓpEn mathématiques, l'espace est un exemple d'espace vectoriel, constitué de suites à valeurs réelles ou complexes et qui possède, pour 1 ≤ p ≤ ∞, une structure d'espace de Banach. Considérons l'espace vectoriel réel R, c'est-à-dire l'espace des n-uplets de nombres réels. La norme euclidienne d'un vecteur est donnée par : Mais pour tout nombre réel p ≥ 1, on peut définir une autre norme sur R, appelée la p-norme, en posant : pour tout vecteur . Pour tout p ≥ 1, R muni de la p-norme est donc un espace vectoriel normé.
Méthode des variables instrumentalesEn statistique et en économétrie, la méthode des variables instrumentales est une méthode permettant d'identifier et d'estimer des relations causales entre des variables. Cette méthode est très souvent utilisée en économétrie. Le modèle de régression linéaire simple fait l'hypothèse que les variables explicatives sont statistiquement indépendantes du terme d'erreur. Par exemple, si on pose le modèle avec x la variable explicative et u le terme d'erreur, on suppose généralement que x est exogène, c'est-à-dire que .
Least-squares spectral analysisLeast-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
Régression vers la moyenneEn statistique, la régression vers la moyenne décrit le phénomène suivant : si une variable est extrême à sa première mesure, elle va généralement se rapprocher de la moyenne à sa seconde mesure. Si elle est extrême à sa seconde mesure elle va tendre à être proche de la moyenne à sa première mesure. Afin d'éviter des inférences erronées, la régression vers la moyenne doit être considérée à la base de la conception des expériences scientifiques et prise en compte lors de l'interprétation des données.
Multinomial logistic regressionIn statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).
High-dimensional statisticsIn statistical theory, the field of high-dimensional statistics studies data whose dimension is larger than typically considered in classical multivariate analysis. The area arose owing to the emergence of many modern data sets in which the dimension of the data vectors may be comparable to, or even larger than, the sample size, so that justification for the use of traditional techniques, often based on asymptotic arguments with the dimension held fixed as the sample size increased, was lacking.