Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA. Developed in 1969 and 1971, LSSA is also known as the Vaníček method and the Gauss-Vaniček method after Petr Vaníček, and as the Lomb method or the Lomb–Scargle periodogram, based on the simplifications first by Nicholas R. Lomb and then by Jeffrey D. Scargle. The close connections between Fourier analysis, the periodogram, and the least-squares fitting of sinusoids have been known for a long time. However, most developments are restricted to complete data sets of equally spaced samples. In 1963, Freek J. M. Barning of Mathematisch Centrum, Amsterdam, handled unequally spaced data by similar techniques, including both a periodogram analysis equivalent to what nowadays is called the Lomb method and least-squares fitting of selected frequencies of sinusoids determined from such periodograms — and connected by a procedure known today as the matching pursuit with post-back fitting or the orthogonal matching pursuit. Petr Vaníček, a Canadian geophysicist and geodesist of the University of New Brunswick, proposed in 1969 also the matching-pursuit approach for equally and unequally spaced data, which he called "successive spectral analysis" and the result a "least-squares periodogram". He generalized this method to account for any systematic components beyond a simple mean, such as a "predicted linear (quadratic, exponential, ...) secular trend of unknown magnitude", and applied it to a variety of samples, in 1971. Vaníček's strictly least-squares method was then simplified in 1976 by Nicholas R. Lomb of the University of Sydney, who pointed out its close connection to periodogram analysis.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
COM-500: Statistical signal and data processing through applications
Building up on the basic concepts of sampling, filtering and Fourier transforms, we address stochastic modeling, spectral analysis, estimation and prediction, classification, and adaptive filtering, w
MATH-342: Time series
A first course in statistical time series analysis and applications.
PHYS-732: Plasma Diagnostics in Basic Plasma Physics Devices and Tokamaks: from Principles to Practice
The programme will allow students to learn plasma diagnostics and data processing methods of modern fusion experiments and to bridge the gap between diagnostics theory and experimental practice.
Afficher plus
Publications associées (295)
Concepts associés (17)
Discrete-time Fourier transform
In mathematics, the discrete-time Fourier transform (DTFT), also called the finite Fourier transform, is a form of Fourier analysis that is applicable to a sequence of values. The DTFT is often used to analyze samples of a continuous function. The term discrete-time refers to the fact that the transform operates on discrete data, often samples whose interval has units of time. From uniformly spaced samples it produces a function of frequency that is a periodic summation of the continuous Fourier transform of the original continuous function.
Estimation spectrale
L'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP). Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories : Modèles autorégressif (AR) Modèles à moyenne ajustée (MA) Modèles autorégressif à moyenne ajustée (ARMA). L'approche paramétrique se décompose en trois étapes : Choisir un modèle décrivant le processus de manière appropriée.
Non-uniform discrete Fourier transform
In applied mathematics, the nonuniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both). It is a generalization of the shifted DFT. It has important applications in signal processing, magnetic resonance imaging, and the numerical solution of partial differential equations.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.