Domaine de premier niveau génériqueUn domaine de premier niveau générique (en anglais generic top-level domain ou gTLD) est un type de domaines de premier niveau (TLD) maintenus par lInternet Assigned Numbers Authority (IANA) pour une utilisation dans le système de nom de domaine d'Internet. Un domaine de premier niveau est le suffixe à la fin de l'adresse d'un site web, par exemple, dans fr.wikipedia.org, le domaine de premier niveau est .org. Un domaine de premier niveau générique est un domaine de premier niveau destiné à accueillir des sous-domaines possédant une caractéristique commune autre que la relation à un pays.
Nom de domaineUn nom de domaine (NDD en notation abrégée française ou DN pour Domain Name en anglais) est, dans le système de noms de domaine DNS, un identifiant de domaine internet. Un domaine est un ensemble d'ordinateurs reliés à Internet et possédant une caractéristique commune. Par exemple, un domaine tel que .fr est l'ensemble des ordinateurs hébergeant des activités pour des personnes ou des organisations qui se sont enregistrées auprès de l'Association française pour le nommage Internet en coopération (AFNIC) qui est le registre responsable du domaine de premier niveau .
Domaine de premier niveauUn domaine de premier niveau ou un domaine de tête (top-level domain, ou TLD), aussi appelé une extension, est, dans le système de noms de domaine internet, un sous-domaine de la racine. Dans un nom de domaine, le domaine de premier niveau est généralement le dernier élément du nom de domaine (exemple : dans , le domaine de premier niveau est ). vignette|Exemples de domaines de premier niveau. Le dernier point est optionnel. À l'origine, il indiquait la fin du nom de domaine. Par simplicité, l'usage courant est de ne plus l'indiquer.
Problème de DirichletEn mathématiques, le problème de Dirichlet est de trouver une fonction harmonique définie sur un ouvert de prolongeant une fonction continue définie sur la frontière de l'ouvert . Ce problème porte le nom du mathématicien allemand Johann Peter Gustav Lejeune Dirichlet. Il n'existe pas toujours de solution au problème de Dirichlet. Dans cette partie, , où est le disque de centre 0 et de rayon 1. Il existe alors une solution au problème de Dirichlet, définie ci-dessous. On a toujours continue sur . On pose : .
ConjectureEn mathématiques, une conjecture est une assertion pour laquelle on ne connaît pas encore de démonstration, mais que l'on croit fortement être vraie (en l'absence de contre-exemple, ou comme généralisation de résultats démontrés). Une conjecture peut être choisie comme hypothèse ou postulat pour étudier d'autres énoncés. Si une conjecture se révèle indécidable relativement au système d'axiomes dans laquelle elle s'insère, elle peut être érigée en nouvel axiome (ou rejetée par la mise en place d'un nouvel axiome).
Loi de Dirichletthumb|right|250px|Plusieurs images de la densité de la loi de Dirichlet lorsque K=3 pour différents vecteurs de paramètres α. Dans le sens horaire à partir du coin supérieur gauche : α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4). En probabilité et statistiques, la loi de Dirichlet, souvent notée Dir(α), est une famille de lois de probabilité continues pour des variables aléatoires multinomiales. Cette loi (ou encore distribution) est paramétrée par le vecteur α de nombres réels positifs et tire son nom de Johann Peter Gustav Lejeune Dirichlet.
Inégalité de ChernoffEn théorie des probabilités, l'inégalité de Chernoff permet de majorer la queue d'une loi de probabilité, c'est-à-dire qu'elle donne une valeur maximale de la probabilité qu'une variable aléatoire dépasse une valeur fixée. On parle également de borne de Chernoff. Elle est nommée ainsi en l'honneur du mathématicien Herman Chernoff. Elle est comparable à l'inégalité de Markov mais donne une borne exponentielle. Il existe de nombreux énoncés, et de nombreux cas particuliers.
Produit cartésienvignette|Illustration d'un produit cartésien A x B où A={x,y,z} et B={1,2,3}. Cet article fait référence au concept mathématique sur les ensembles. Pour les graphes, voir produit cartésien de graphes. En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles.
Registraire de nom de domaineUn registraire de nom de domaine ou bureau d'enregistrement est une société ou une association gérant la réservation de noms de domaine Internet, dans les domaines de premier niveau où il n'y a pas de vente directe pour le registre de noms de domaine. Le registraire est en contact direct avec le client final. Il s'est inscrit auprès des divers registres de noms de domaine en fonction des extensions qu'il souhaite commercialiser (il paye pour cela une redevance annuelle).
Catégorie cartésienneUne catégorie cartésienne est, en mathématiques — et plus précisément en théorie des catégories — une catégorie munie d'un objet terminal et du produit binaire. Dans une catégorie cartésienne, la notion de morphisme entre morphismes n'a pas encore de sens. C'est pourquoi l'on définit l'exponentiation, c'est-à-dire l'objet B qui représente l'« ensemble » des morphismes de A dans B. Munie de cette propriété de clôture qu'est l'exponentiation, une catégorie cartésienne devient une catégorie cartésienne fermée.