Informatique théoriquevignette|Une représentation artistique d'une machine de Turing. Les machines de Turing sont un modèle de calcul. L'informatique théorique est l'étude des fondements logiques et mathématiques de l'informatique. C'est une branche de la science informatique et la science formelle. Plus généralement, le terme est utilisé pour désigner des domaines ou sous-domaines de recherche centrés sur des vérités universelles (axiomes) en rapport avec l'informatique.
Algorithme déterministeEn Informatique, un algorithme déterministe est un algorithme qui, étant donné une entrée particulière, produira toujours la même sortie, avec la machine sous-jacente passant toujours par la même séquence d'états. Les algorithmes déterministes forment, de loin, la famille d'algorithme la plus étudiée. Formellement, un algorithme déterministe calcule une fonction mathématique ; une fonction ayant une valeur unique pour n'importe quelle entrée dans son ensemble de définition, l'algorithme produit cette valeur en sortie.
Approximation-preserving reductionIn computability theory and computational complexity theory, especially the study of approximation algorithms, an approximation-preserving reduction is an algorithm for transforming one optimization problem into another problem, such that the distance of solutions from optimal is preserved to some degree. Approximation-preserving reductions are a subset of more general reductions in complexity theory; the difference is that approximation-preserving reductions usually make statements on approximation problems or optimization problems, as opposed to decision problems.
Nondeterministic algorithmIn computer programming, a nondeterministic algorithm is an algorithm that, even for the same input, can exhibit different behaviors on different runs, as opposed to a deterministic algorithm. There are several ways an algorithm may behave differently from run to run. A concurrent algorithm can perform differently on different runs due to a race condition. A probabilistic algorithm's behaviors depends on a random number generator.
Method of conditional probabilitiesIn mathematics and computer science, the probabilistic method is used to prove the existence of mathematical objects with desired combinatorial properties. The proofs are probabilistic — they work by showing that a random object, chosen from some probability distribution, has the desired properties with positive probability. Consequently, they are nonconstructive — they don't explicitly describe an efficient method for computing the desired objects.
Schéma d'approximation en temps polynomialEn informatique, un schéma d'approximation en temps polynomial (en anglais polynomial-time approximation scheme, abrégé en PTAS) est une famille d'algorithmes d'approximation pour des problèmes d'optimisation combinatoire. On dit aussi plus simplement schéma d'approximation polynomial. Le plus souvent, les problèmes d'optimisation combinatoire considérés sont NP-difficiles. Plusieurs variantes des PTAS existent : des définitions plus restrictives comme les EPTAS et FPTAS, ou d'autres qui reposent sur les algorithmes probabilistes comme les PRAS et FPRAS.
Problème de bin packingEn recherche opérationnelle et en optimisation combinatoire, le bin packing est un problème algorithmique. Il s'agit de ranger des objets dans un nombre minimum de boîtes. Le problème classique se définit en une dimension, mais il existe de nombreuses variantes en deux ou trois dimensions. Le problème de bin packing peut s'appliquer à un grand nombre de secteurs industriels ou informatiques. Pour la version classique en une dimension : rangement de fichiers sur un support informatique ; découpe de câbles ; remplissage de camions ou de containers avec comme seule contrainte le poids ou le volume des articles.
Randomness testA randomness test (or test for randomness), in data evaluation, is a test used to analyze the distribution of a set of data to see whether it can be described as random (patternless). In stochastic modeling, as in some computer simulations, the hoped-for randomness of potential input data can be verified, by a formal test for randomness, to show that the data are valid for use in simulation runs. In some cases, data reveals an obvious non-random pattern, as with so-called "runs in the data" (such as expecting random 0–9 but finding "4 3 2 1 0 4 3 2 1.
Randomized roundingWithin computer science and operations research, many combinatorial optimization problems are computationally intractable to solve exactly (to optimality). Many such problems do admit fast (polynomial time) approximation algorithms—that is, algorithms that are guaranteed to return an approximately optimal solution given any input. Randomized rounding is a widely used approach for designing and analyzing such approximation algorithms.
Formule de Stirlingvignette La formule de Stirling, du nom du mathématicien écossais James Stirling, donne un équivalent de la factorielle d'un entier naturel n quand n tend vers l'infini : que l'on trouve souvent écrite ainsi : où le nombre e désigne la base de l'exponentielle. C'est Abraham de Moivre qui a initialement démontré la formule suivante : où C est une constante réelle (non nulle). L'apport de Stirling fut d'attribuer la valeur C = à la constante et de donner un développement de ln(n!) à tout ordre.