Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We present a coding paradigm that provides a new achievable rate for the primitive relay channel by combining compress-and-forward and decode-and-forward with a chaining construction. In the primitive relay channel model, the source broadcasts a message to the relay and to the destination; and the relay facilitates this communication by sending an additional message to the destination through a separate channel. Two well-known coding approaches for this setting are decode-and-forward and compress-and-forward: in the former, the relay decodes the message and sends some of the information to the destination; in the latter, the relay does not attempt to decode, but it sends a compressed description of the received sequence to the destination via Wyner-Ziv coding. In our scheme, we transmit over pairs of blocks and we use compress-and-forward for the first block and decode-and-forward for the second. In particular, in the first block, the relay does not attempt to decode and it sends only a part of the compressed description of the received sequence; in the second block, the relay decodes the message and sends this information plus the remaining part of the compressed sequence relative to the first block. As a result, we strictly outperform both compress-and-forward and decode-and-forward. Furthermore, this paradigm can be implemented with a low-complexity polar coding scheme that has the typical attractive features of polar codes, i.e., quasi-linear encoding/decoding complexity and super-polynomial decay of the error probability. Throughout the paper we consider as a running example the special case of the erasure relay channel and we compare the rates achievable by our proposed scheme with the existing upper and lower bounds.
Andreas Peter Burg, Yifei Shen, Leyu Zhang, Chuan Zhang