Effet isotopique cinétiqueL'effet isotopique cinétique (en anglais, kinetic isotope effect ou KIE) est la variation de la vitesse d'une réaction chimique lorsqu'un atome d'un des réactifs est remplacé par l'un de ses isotopes. Par exemple, le remplacement d'un atome C par un atome C conduit à un effet isotopique cinétique défini par le rapport des constantes de vitesse (on met en général au numérateur la constante qui concerne l'isotope le plus léger). Dans la substitution nucléophile du bromure de méthyle par l'ion cyanure, le rapport mesuré est de .
SinguletLa notion de « singulet » prend un sens différent selon qu'on l'utilise dans le domaine de la physique ou de la chimie. En physique théorique, un singulet peut faire référence à une représentation uni-dimensionnelle (par exemple une particule dont le spin disparaît). deux ou plusieurs particules corrélées de telle façon que le moment angulaire total de l'état soit égal à zéro. En physique atomique, les singulets sont fréquemment présentés comme l'une des deux façons de combiner le spin de deux électrons, l'autre étant le triplet.
Conversion intersystèmeL'IUPAC décrit la conversion intersystème comme : Lorsque, dans une molécule, un électron est excité jusqu'à un niveau d'énergie supérieur (notamment par absorption d'un rayonnement), cela conduit selon les cas à un état singulet ou à un état triplet : Un état singulet correspond à une configuration électronique dans laquelle tous les électrons de spin opposés sont appariés deux à deux (ce qu'on représente par le diagramme ), y compris l'électron excité bien qu'il occupe un niveau d'énergie différent des éle
Diagramme de JablonskiUn Diagramme de Perrin-Jablonski, nommé d'après les physiciens français et polonais Francis Perrin et Alexandre Jabłoński, représente les états électroniques d'une molécule et les transitions entre ces états. L'axe vertical indique le niveau d'énergie, tandis que les états sont groupés horizontalement selon leur multiplicité de spin. Les transitions non-radiatives sont symbolisées par des flèches droites tandis que les radiatives le sont par des flèches ondulées.
CaryotypeLe caryotype (ou caryogramme) est l'arrangement standard de l'ensemble des chromosomes d'une cellule, à partir d'une prise de vue microscopique. Les chromosomes sont photographiés et disposés selon un format standard : par paire et classés par taille, et par position du centromère. On réalise des caryotypes dans le but de détecter des aberrations chromosomiques (telles que la trisomie 21) ou d'identifier certains aspects du génome de l'individu, comme le sexe (XX ou XY). Notons qu'un caryotype se présente sous forme de photographie.
Hormone thyroïdiennevignette|Structure de la L-thyroxine (T4). vignette|Structure de la L-triiodothyronine (T3). Les hormones thyroïdiennes, c'est-à-dire la thyroxine (T4) la triiodothyronine (T3) et la diiodothyronine (T2), sont des hormones produites par les cellules folliculaires de la thyroïde à partir de la thyroglobuline et d'iodure. Il existe également la thyrocalcitonine, hormone produite par les cellules parafolliculaires de la thyroide et qui joue un rôle dans le métabolisme phospho-calcique.
Hybridation génomique comparativeL'hybridation génomique comparative (en anglais, Comparative Genomic Hybridization ou CGH) est une technique de cytogénétique moléculaire permettant d'analyser les variations du nombre de copies dans l'ADN. Dans un organisme diploïde tel que l'humain, chaque segment d'ADN peut être trouvé en duplicat : une copie est présente sur chacun des deux chromosomes d'une paire. Dans certaines pathologies, le nombre de copies peut varier : il peut augmenter par exemple en cas de duplication et diminuer dans le cas de délétion.
Règle de sélectionEn mécanique quantique, une règle de sélection est une condition de symétrie permettant d'affirmer qu'un produit scalaire ou un élément de matrice sera nul sans avoir à le calculer explicitement. Les règles sont principalement utilisées pour étudier la possibilité d'effectuer une transition optique entre deux états (absorption ou émission de lumière). En effet, dans le cadre de la règle d'or de Fermi, une transition optique entre un état et un état n'est possible que si l'élément de matrice est différent de .
Allotropie de l'oxygèneLallotropie de l'oxygène désigne la faculté de l'oxygène à exister sous différentes formes. La forme la plus familière est le dioxygène (), présent à des niveaux significatifs dans l'atmosphère terrestre. L'ozone () est également un allotrope, tout comme l'oxygène atomique (O), le tétraoxygène () et l'oxygène solide dont et une phase métallique. L'oxygène atomique est un composant de la haute atmosphère terrestre (mésosphère et basse thermosphère), produit par photolyse de l'oxygène moléculaire.
Règle de HundEn physique atomique, les règles de Hund se réfèrent à un ensemble de règles simples utilisées pour déterminer quel est le terme spectroscopique fondamental de l'atome considéré. Elles furent proposées par Friedrich Hund. En chimie, la première de ces règles est particulièrement importante, et l'on se réfère souvent à elle seule sous le terme de « règle de Hund ». Les trois règles de Hund sont : Pour une configuration électronique donnée, le terme de plus faible énergie est celui maximisant le spin total ( maximal), ainsi que la multiplicité qui égale .