Aimant aux terres raresLes aimants permanents faisant appel aux terres rares utilisent une grande partie de l'exploitation minière de terres rares qui sont au cœur d'une compétition économique mondiale. Les aimants permanents représentent 20 % du volume et 72 % de la valeur des différentes utilisations des terres rares en 2018. Les terres rares permettent la miniaturisation d’aimants très performants, ce qui en multiplie les applications.
Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Rayonnement cosmiqueLe rayonnement cosmique est le flux de noyaux atomiques et de particules de haute énergie (c'est-à-dire relativistes) qui circulent dans le milieu interstellaire. Le rayonnement cosmique est principalement constitué de particules chargées : protons (88 %), noyaux d'hélium (9 %), antiprotons, électrons, positrons et particules neutres (rayons gamma, neutrinos et neutrons). La source de ce rayonnement se situe selon les cas dans le Soleil, à l'intérieur ou à l'extérieur de notre galaxie.
Champ magnétique terrestreLe champ magnétique terrestre, aussi appelé bouclier terrestre, est un champ magnétique présent dans un vaste espace autour de la Terre (de manière non uniforme du fait de son interaction avec le vent solaire) ainsi que dans la croûte et le manteau. Il a son origine dans le noyau externe, par un mécanisme de dynamo auto-excitée. Dynamo terrestre Selon les études de John Tarduno de l'université de Rochester (États-Unis), la Terre possédait déjà un champ magnétique il y a 3,45 milliards d'années.
NeutronLe neutron est une particule subatomique de charge électrique nulle. Les neutrons sont présents dans le noyau des atomes, liés avec des protons par l'interaction forte. Alors que le nombre de protons d'un noyau détermine son élément chimique, le nombre de neutrons détermine son isotope. Les neutrons liés dans un noyau atomique sont en général stables mais les neutrons libres sont instables : ils se désintègrent en un peu moins de 15 minutes (880,3 secondes). Les neutrons libres sont produits dans les opérations de fission et de fusion nucléaires.
Imagerie médicaleL'imagerie médicale regroupe les moyens d'acquisition et de restitution d'images du corps humain à partir de différents phénomènes physiques tels que l'absorption des rayons X, la résonance magnétique nucléaire, la réflexion d'ondes ultrasons ou la radioactivité auxquels on associe parfois les techniques d'imagerie optique comme l'endoscopie. Apparues, pour les plus anciennes, au tournant du , ces techniques ont révolutionné la médecine grâce au progrès de l'informatique en permettant de visualiser indirectement l'anatomie, la physiologie ou le métabolisme du corps humain.
Champ coercitifEn science des matériaux, le champ coercitif d'un matériau ferromagnétique désigne l'intensité du champ magnétique qu'il est nécessaire d'appliquer à un matériau ayant initialement atteint son aimantation à saturation, pour annuler l'aimantation du matériau. Le champ coercitif est usuellement noté ou . Lorsque le champ coercitif d'un ferromagnétique est très élevé, le matériau est qualifié de dur.
Saturation (magnetic)Seen in some magnetic materials, saturation is the state reached when an increase in applied external magnetic field H cannot increase the magnetization of the material further, so the total magnetic flux density B more or less levels off. (Though, magnetization continues to increase very slowly with the field due to paramagnetism.) Saturation is a characteristic of ferromagnetic and ferrimagnetic materials, such as iron, nickel, cobalt and their alloys. Different ferromagnetic materials have different saturation levels.
Électroaimantthumb|upright|Un simple électroaimant constitué d'un noyau en ferrite et d'un fil électrique enroulé autour. La force mécanique d'attraction de l'électroaimant est proportionnelle au carré du produit du courant par le nombre de spires. Un électro-aimant produit un champ magnétique lorsqu'il est alimenté par un courant électrique : il convertit de l’énergie électrique en énergie magnétique. Il est constitué d’un bobinage et d’une pièce polaire en matériau ferromagnétique doux appelé cœur magnétique qui canalise les lignes de champ magnétique.