Publication

Logistic regression over encrypted data from fully homomorphic encryption

Zhicong Huang
2018
Article
Résumé

Background: One of the tasks in the 2017 iDASH secure genome analysis competition was to enable training of logistic regression models over encrypted genomic data. More precisely, given a list of approximately 1500 patient records, each with 18 binary features containing information on specific mutations, the idea was for the data holder to encrypt the records using homomorphic encryption, and send them to an untrusted cloud for storage. The cloud could then homomorphically apply a training algorithm on the encrypted data to obtain an encrypted logistic regression model, which can be sent to the data holder for decryption. In this way, the data holder could successfully outsource the training process without revealing either her sensitive data, or the trained model, to the cloud. Methods: Our solution to this problem has several novelties: we use a multi-bit plaintext space in fully homomorphic encryption together with fixed point number encoding; we combine bootstrapping in fully homomorphic encryption with a scaling operation in fixed point arithmetic; we use a minimax polynomial approximation to the sigmoid function and the 1-bit gradient descent method to reduce the plaintext growth in the training process. Results: Our algorithm for training over encrypted data takes 0.4-3.2 hours per iteration of gradient descent. Conclusions: We demonstrate the feasibility but high computational cost of training over encrypted data. On the other hand, our method can guarantee the highest level of data privacy in critical applications.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.