Virgule fixeEn informatique, une représentation d'un nombre en virgule fixe est un type de donnée correspondant à un nombre qui possède (en base deux ou en base dix) un nombre fixe de chiffres après la virgule. Les nombres en virgule fixe sont utiles pour représenter des quantités fractionnaires dans un format utilisant le complément à deux quand le processeur de l'ordinateur n'a aucune unité de calcul en virgule flottante ou quand une virgule fixe permet d'augmenter la vitesse d'exécution ou d'améliorer l'exactitude des calculs.
Virgule flottantevignette|Comme la notation scientifique, le nombre à virgule flottante a une mantisse et un exposant. La virgule flottante est une méthode d'écriture de nombres fréquemment utilisée dans les ordinateurs, équivalente à la notation scientifique en numération binaire. Elle consiste à représenter un nombre par : un signe (égal à −1 ou 1) ; une mantisse (aussi appelée significande) ; et un exposant (entier relatif, généralement borné).
Fonction logistique (Verhulst)En mathématiques, les fonctions logistiques sont les fonctions ayant pour expression où et sont des réels positifs et un réel quelconque. Ce sont les solutions en temps continu du modèle de Verhulst. Pour , leur courbe représentative a la forme d'un S ce qui fait qu'elles sont parfois appelées sigmoïdes. Ces fonctions ont été mises en évidence (vers 1840) par Pierre-François Verhulst, qui cherchait un modèle d'évolution non exponentielle de population comportant un frein et une capacité d'accueil .
Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Multinomial logistic regressionIn statistics, multinomial logistic regression is a classification method that generalizes logistic regression to multiclass problems, i.e. with more than two possible discrete outcomes. That is, it is a model that is used to predict the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables (which may be real-valued, binary-valued, categorical-valued, etc.).
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Decimal floating pointDecimal floating-point (DFP) arithmetic refers to both a representation and operations on decimal floating-point numbers. Working directly with decimal (base-10) fractions can avoid the rounding errors that otherwise typically occur when converting between decimal fractions (common in human-entered data, such as measurements or financial information) and binary (base-2) fractions. The advantage of decimal floating-point representation over decimal fixed-point and integer representation is that it supports a much wider range of values.
Sigmoïde (mathématiques)En mathématiques, la fonction sigmoïde (dite aussi courbe en S) est définie par : pour tout réel mais on la généralise à toute fonction dont l'expression est : Elle représente la fonction de répartition de la loi logistique. La courbe sigmoïde génère par transformation affine une partie des courbes logistiques, ce qui en fait une représentante privilégiée. La fonction sigmoïde est souvent utilisée dans les réseaux de neurones parce qu'elle est dérivable, ce qui est nécessaire pour l'algorithme de rétropropagation de Werbos, et parce que son codomaine est l'intervalle , ce qui permet d'obtenir des valeurs analogues à des probabilités.
Loi logistiqueEn probabilité et en statistiques, la loi logistique est une loi de probabilité absolument continue à support infini utilisé en régression logistique et pour les réseaux de neurones à propagation avant. Son nom de loi logistique est issu du fait que sa fonction de répartition est une fonction logistique. La loi logistique a deux paramètres μ et s > 0 et sa densité est Sa fonction de répartition est Son espérance et sa variance sont données par les formules suivantes : La loi logistique standard est la loi logistique de paramètres 0 et 1.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.