Publication

Combining Fourier Analysis And Machine Learning To Estimate The Shallow-Ground Thermal Diffusivity In Switzerland

Résumé

We propose a methodology combining physical modelling and machine learning (ML) to estimate the apparent ground thermal diffusivity at the scale of a country. Based on ground temperature time series at different depths, we estimate the diffusivity at 49 Swiss stations using Fourier analysis. Using a geology database, the diffusivity estimations are cross-validated with typical values for common rocks. Random Forests, an ML algorithm, are used to train a model using the previous diffusivity estimations as output values and multiple geological, elevation and temperature features. The model, showing a testing error of 16.5%, is then used to perform the estimation of apparent diffusivity everywhere in Switzerland.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.