Équation de LaplaceEn analyse vectorielle, l'équation de Laplace est une équation aux dérivées partielles elliptique du second ordre, dont le nom est un hommage au physicien mathématicien Pierre-Simon de Laplace. Introduite pour les besoins de la mécanique newtonienne, l'équation de Laplace apparaît dans de nombreuses autres branches de la physique théorique : astronomie, électrostatique, mécanique des fluides, propagation de la chaleur, diffusion, mouvement brownien, mécanique quantique.
Corps finiEn mathématiques et plus précisément en algèbre, un corps fini est un corps commutatif qui est par ailleurs fini. À isomorphisme près, un corps fini est entièrement déterminé par son cardinal, qui est toujours une puissance d'un nombre premier, ce nombre premier étant sa caractéristique. Pour tout nombre premier p et tout entier non nul n, il existe un corps de cardinal pn, qui se présente comme l'unique extension de degré n du corps premier Z/pZ.
Polynôme réciproqueEn mathématiques, le polynôme réciproque d'un polynôme à coefficients complexes est le polynôme P* défini par : où désigne le conjugué de . Pour tout nombre complexe z non nul, on a donc : Un polynôme est dit réciproque lorsqu'il est égal à son polynôme réciproque. Si les coefficients ai sont réels, cette définition équivaut à ai = an−i. Dans ce cas, P est aussi appelé un . Le polynôme minimal sur d'un nombre algébrique de module 1 est égal ou opposé à son polynôme réciproque.
Brook TaylorBrook Taylor est un homme de science anglais, né à Edmonton, aujourd'hui un quartier de Londres, le , et mort à Londres le . Principalement connu comme mathématicien, il s'intéressa aussi à la musique, à la peinture et à la religion. Brook Taylor fut un élève du St. John's College de Cambridge. En 1712, il fut admis à la Royal Society. Il était alors peu connu et son élection fut basée sur le jugement de ses maîtres, de John Machin et de John Keill.
Nombre normalEn mathématiques, un nombre normal en base 10 est un nombre réel tel que dans la suite de ses décimales, toute suite finie de décimales consécutives (ou séquence) apparaît avec la même fréquence limite que n'importe laquelle des séquences de même longueur. Par exemple, la séquence 1789 y apparaît avec une fréquence limite 1/10 000. Émile Borel les a ainsi nommés lors de sa démonstration du fait que presque tout réel possède cette propriété. Notons l'ensemble des chiffres en base , et soit un nombre réel.