Concept

Brook Taylor

Résumé
Brook Taylor est un homme de science anglais, né à Edmonton, aujourd'hui un quartier de Londres, le , et mort à Londres le . Principalement connu comme mathématicien, il s'intéressa aussi à la musique, à la peinture et à la religion. Brook Taylor fut un élève du St. John's College de Cambridge. En 1712, il fut admis à la Royal Society. Il était alors peu connu et son élection fut basée sur le jugement de ses maîtres, de John Machin et de John Keill. Par exemple Taylor écrivit à Machin en 1712 pour lui fournir la solution d'un problème concernant la deuxième loi de Kepler sur les mouvements des planètes. En 1712 également, il fit partie d'un comité pour départager Newton et Leibniz. En 1714, Taylor fut élu secrétaire de la Royal Society, et il y resta du au , lorsqu'il dut démissionner pour raisons de santé et par manque de motivation. La période où il fut secrétaire de la Royal Society fut celle de sa vie où il fut le plus productif en mathématiques. En 1715 il publia Methodus incrementorum directa et inversa et Linear Perspective, ouvrages très importants pour l'histoire des mathématiques. Deux secondes éditions furent publiées, respectivement en 1717 et en 1719. Dans ces deux ouvrages les mathématiques croisent l'intérêt que Taylor avait eu pour les arts dans sa jeunesse : non seulement la peinture, dans Linear Perspective, mais aussi la musique, dans le problème des cordes vibrantes, abordé dans Methodus. thumb|Taylor peint par Louis Goupy en 1720 Taylor fit de nombreux séjours en France. C'était d'une part à la suite de problèmes de santé et d'autre part pour rendre visite à des amis. Il rencontra Pierre Rémond de Montmort et correspondit avec lui sur différents sujets de mathématiques après son retour. Ils discutèrent en particulier des séries infinies et de probabilités. Taylor correspondit aussi avec Abraham de Moivre sur les probabilités. À cette époque les trois eurent une correspondance suivie. Il ajouta aux mathématiques une nouvelle branche appelée « calcul de différences finies », inventa l'intégration par parties, et découvrit les séries appelées « développements de Taylor ».
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.