Fonction récursive primitiveEn théorie de la calculabilité, une fonction récursive primitive est une fonction construite à partir de la fonction nulle, de la fonction successeur, des fonctions projections et des schémas de récursion primitive (ou bornée) et de composition. Ces fonctions constituent un sous-ensemble strict des fonctions récursives. Elles ont été initialement analysées par la mathématicienne Rózsa Péter. On s'intéresse aux fonctions définies sur l'ensemble des entiers naturels, ou sur les ensembles des -uplets d'entiers naturels, et à valeurs dans .
Image momentIn , computer vision and related fields, an image moment is a certain particular weighted average (moment) of the image pixels' intensities, or a function of such moments, usually chosen to have some attractive property or interpretation. Image moments are useful to describe objects after . Simple properties of the image which are found via image moments include area (or total intensity), its centroid, and information about its orientation. For a 2D continuous function f(x,y) the moment (sometimes called "raw moment") of order (p + q) is defined as for p,q = 0,1,2,.
RécursivitéLa récursivité est une démarche qui fait référence à l'objet même de la démarche à un moment du processus. En d'autres termes, c'est une démarche dont la description mène à la répétition d'une même règle.
Moment magnétiqueEn physique, le moment magnétique est une grandeur vectorielle qui permet de caractériser l'intensité d'une source magnétique. Cette source peut être un courant électrique, ou bien un objet aimanté. L'aimantation est la distribution spatiale du moment magnétique. Le moment magnétique d'un corps se manifeste par la tendance qu'a ce corps à s'aligner dans le sens d'un champ magnétique, c'est par exemple le cas de l'aiguille d'une boussole : le moment que subit l'objet est égal au produit vectoriel de son moment magnétique par le champ magnétique dans lequel il est placé.
Problème P ≟ NPvignette|400px|Représentation visuelle des deux configurations possibles. Le problème P ≟ NP est une conjecture en mathématiques, et plus précisément en informatique théorique, considérée par de nombreux chercheurs comme une des plus importantes conjectures du domaine, et même des mathématiques en général. L'Institut de mathématiques Clay a inclus ce problème dans sa liste des sept problèmes du prix du millénaire, et offre à ce titre un million de dollars à quiconque sera en mesure de démontrer P = NP ou P ≠ NP ou de démontrer que ce n'est pas démontrable.
Fonction récursiveEn informatique et en mathématiques, le terme fonction récursive ou fonction calculable désigne la classe de fonctions dont les valeurs peuvent être calculées à partir de leurs paramètres par un processus mécanique fini. En fait, cela fait référence à deux concepts liés, mais distincts. En théorie de la calculabilité, la classe des fonctions récursives est une classe plus générale que celle des fonctions récursives primitives, mais plus restreinte que celle des fonctions semi-calculables (ou partielles récursives).
Théorème de Taylorredresse=1.5|vignette|Représentation de la fonction logarithme (en noir) et des approximations de Taylor au point 1 (en vert). En mathématiques, plus précisément en analyse, le théorème de Taylor (ou formule de Taylor), du nom du mathématicien anglais Brook Taylor qui l'établit en 1715, montre qu'une fonction plusieurs fois dérivable au voisinage d'un point peut être approchée par une fonction polynomiale dont les coefficients dépendent uniquement des dérivées de la fonction en ce point.
Équation différentielle stochastiqueUne équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.
Fluide de Binghamthumb|302px|La mayonnaise est un fluide de Bingham. Les plis et crêtes à la surface montrent que sous de faibles contraintes de cisaillement, les fluides de Bingham sont des quasi-solides. Le fluide de Bingham est un modèle théorique de milieu viscoplastique qui correspond à un comportement de solide parfait sous faibles contraintes, et à un comportement de fluide visqueux au-delà d'une contrainte-seuil. Ce modèle porte le nom d’Eugène Bingham qui en a donné l'expression mathématique.
Analytic–synthetic distinctionThe analytic–synthetic distinction is a semantic distinction used primarily in philosophy to distinguish between propositions (in particular, statements that are affirmative subject–predicate judgments) that are of two types: analytic propositions and synthetic propositions. Analytic propositions are true or not true solely by virtue of their meaning, whereas synthetic propositions' truth, if any, derives from how their meaning relates to the world.