In this paper, a finite element error analysis is performed on a class of linear and nonlinear elliptic problems with small uncertain input. Using a perturbation approach, the exact (random) solution is expanded up to a certain order with respect to a parameter that controls the amount of randomness in the input and discretized by finite elements. We start by studying a diffusion (linear) model problem with a random coefficient characterized via a finite number of random variables. A priori and a posteriori estimates of the error between the exact and approximate solution are given in various norms, including goal-oriented error estimation. The analysis is then extended to a class of nonlinear problems. We finally illustrate the theoretical results through numerical examples, along with a comparison with the Stochastic Collocation method in terms of computational costs.
Annalisa Buffa, Denise Grappein, Rafael Vazquez Hernandez, Ondine Gabrielle Chanon
Thomas Mountford, Michael Cranston
Pablo Antolin Sanchez, Ondine Gabrielle Chanon