In statistics, an exchangeable sequence of random variables (also sometimes interchangeable) is a sequence X1, X2, X3, ... (which may be finitely or infinitely long) whose joint probability distribution does not change when the positions in the sequence in which finitely many of them appear are altered. Thus, for example the sequences both have the same joint probability distribution. It is closely related to the use of independent and identically distributed random variables in statistical models. Exchangeable sequences of random variables arise in cases of simple random sampling. Formally, an exchangeable sequence of random variables is a finite or infinite sequence X1, X2, X3, ... of random variables such that for any finite permutation σ of the indices 1, 2, 3, ..., (the permutation acts on only finitely many indices, with the rest fixed), the joint probability distribution of the permuted sequence is the same as the joint probability distribution of the original sequence. (A sequence E1, E2, E3, ... of events is said to be exchangeable precisely if the sequence of its indicator functions is exchangeable.) The distribution function FX1,...,Xn(x1, ..., xn) of a finite sequence of exchangeable random variables is symmetric in its arguments x1, ..., xn. Olav Kallenberg provided an appropriate definition of exchangeability for continuous-time stochastic processes. The concept was introduced by William Ernest Johnson in his 1924 book Logic, Part III: The Logical Foundations of Science. Exchangeability is equivalent to the concept of statistical control introduced by Walter Shewhart also in 1924. The property of exchangeability is closely related to the use of independent and identically distributed (i.i.d.) random variables in statistical models. A sequence of random variables that are i.i.d, conditional on some underlying distributional form, is exchangeable. This follows directly from the structure of the joint probability distribution generated by the i.i.d. form. Mixtures of exchangeable sequences (in particular, sequences of i.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (32)
BIO-369: Randomness and information in biological data
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
MATH-432: Probability theory
The course is based on Durrett's text book Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.