Statistiques non paramétriquesLa statistique non paramétrique est un domaine de la statistique qui ne repose pas sur des familles de loi de probabilité paramétriques. Les méthodes non paramétriques pour la régression comprennent les histogrammes, les méthodes d'estimation par noyau, les splines et les décompositions dans des dictionnaires de filtres (par exemple décomposition en ondelettes). Bien que le nom de non paramétriques soit donné à ces méthodes, elles reposent en vérité sur l'estimation de paramètres.
Technologies de l'éducationLes technologies de l'éducation (Edtech en anglais, pour Educational technology) désignent l'ensemble des nouvelles technologies permettant de faciliter l’enseignement et l'apprentissage. On parle alors de technologies pédagogiques qui permettent d'apprendre de nouveaux contenus sous une forme ludique, stimulante et innovante. Le terme Edtech, né de la contraction d'« éducation » et de « technologie », est apparu dans la littérature anglophone en 2010. Il est devenu populaire pour désigner les startups qui innovent au service de l'éducation.
Robot autonomevignette|exemple de robot autonome de type rover Un robot autonome, également appelé simplement autorobot ou autobot, est un robot qui exécute des comportements ou des tâches avec un degré élevé d'autonomie (sans influence extérieure). La robotique autonome est généralement considérée comme un sous-domaine de l'intelligence artificielle, de la robotique et de l'. Les premières versions ont été proposées et démontrées par l'auteur/inventeur David L. Heiserman.
Famille exponentielleEn théorie des probabilités et en statistique, une famille exponentielle est une classe de lois de probabilité dont la forme générale est donnée par : où est la variable aléatoire, est un paramètre et est son paramètre naturel. Les familles exponentielles présentent certaines propriétés algébriques et inférentielles remarquables. La caractérisation d'une loi en famille exponentielle permet de reformuler la loi à l'aide de ce que l'on appelle des paramètres naturels.
Loi de mélangeEn probabilité et en statistiques, une loi de mélange est la loi de probabilité d'une variable aléatoire s'obtenant à partir d'une famille de variables aléatoires de la manière suivante : une variable aléatoire est choisie au hasard parmi la famille de variables aléatoires donnée, puis la valeur de la variable aléatoire sélectionnée est réalisée. Les variables aléatoires sous-jacentes peuvent être des nombres réels aléatoires, ou des vecteurs aléatoires (chacun ayant la même dimension), auquel cas la répartition du mélange est une répartition à plusieurs variables.
Méthode deltaEn probabilité et en statistiques, la méthode delta (ou delta méthode) est une méthode pour obtenir une approximation de la distribution asymptotique de la transformée d'une variable aléatoire asymptotiquement normale. Plus généralement, on peut considérer la méthode delta comme une extension du théorème central limite. Soit une suite de variables aléatoires . Si pour deux constantes finies et et où dénote la convergence en loi, alors, la méthode delta donne, pour toute fonction dérivable et telle que : Soit une suite de vecteurs aléatoires de , une fonction différentiable en .
Self-reconfiguring modular robotModular self-reconfiguring robotic systems or self-reconfigurable modular robots are autonomous kinematic machines with variable morphology. Beyond conventional actuation, sensing and control typically found in fixed-morphology robots, self-reconfiguring robots are also able to deliberately change their own shape by rearranging the connectivity of their parts, in order to adapt to new circumstances, perform new tasks, or recover from damage.
Moyenne pondéréeLa moyenne pondérée est la moyenne d'un certain nombre de valeurs affectées de coefficients. En statistiques, considérant un ensemble de données et les coefficients, ou poids, correspondants, de somme non nulle, la moyenne pondérée est calculée suivant la formule : quotient de la somme pondérée des par la somme des poids soit Il s'agit donc du barycentre du système . Lorsque tous les poids sont égaux, la moyenne pondérée est identique à la moyenne arithmétique.
Atlas (robot)vignette|Vue de face du robot Atlas en 2013. Atlas est un robot de type androïde principalement développé par Boston Dynamics, sous financement et surveillance de la Defense Advanced Research Projects Agency (DARPA). Il mesure 1,88 m et est conçu pour diverses tâches de recherche et sauvetage, il a été dévoilé au public le . Le développement d'Atlas fait partie du Darpa Robotics Challenge. En 2016, une vidéo présentant une évolution du robot est diffusée par Boston Dynamics.
Dilemme biais-varianceEn statistique et en apprentissage automatique, le dilemme (ou compromis) biais–variance est le problème de minimiser simultanément deux sources d'erreurs qui empêchent les algorithmes d'apprentissage supervisé de généraliser au-delà de leur échantillon d'apprentissage : Le biais est l'erreur provenant d’hypothèses erronées dans l'algorithme d'apprentissage. Un biais élevé peut être lié à un algorithme qui manque de relations pertinentes entre les données en entrée et les sorties prévues (sous-apprentissage).