Base de données orientée grapheUne base de données orientée graphe est une base de données orientée objet utilisant la théorie des graphes, donc avec des nœuds et des arcs, permettant de représenter et stocker les données. Par définition, une base de données orientée graphe correspond à un système de stockage capable de fournir une adjacence entre éléments voisins : chaque voisin d'une entité est accessible grâce à un pointeur physique. C'est une base de données orientée objet adaptée à l'exploitation des structures de données de type graphe ou dérivée, comme des arbres.
Sphèrevignette|Rendu en fil de fer d'une sphère dans un espace euclidien. En géométrie dans l'espace, une sphère est une surface constituée de tous les points situés à une même distance d'un point appelé centre. La valeur de cette distance au centre est le rayon de la sphère. La géométrie sphérique est la science qui étudie les propriétés des sphères. La surface de la Terre peut, en première approximation, être modélisée par une sphère dont le rayon est d'environ .
Tracé de graphesEn théorie des graphes, le tracé de graphes consiste à représenter des graphes dans le plan. Le tracé de graphes est utile à des applications telles que la conception de circuits VLSI, l'analyse de réseaux sociaux, la cartographie, et la bio-informatique. Les graphes sont généralement représentés en utilisant des points, disques ou boites pour représenter les sommets, et des courbes ou des segments pour représenter les arêtes. Pour les graphes orientés, on utilise habituellement ses flèches en bout d'arête pour représenter l'orientation.
Graphe orientéthumb|Un graphe orienté .(Figure 1) Dans la théorie des graphes, un graphe orienté est un couple formé de un ensemble, appelé ensemble de nœuds et un ensemble appelé ensemble d'arêtes. Les arêtes sont alors nommées arcs, chaque arête étant un couple de noeuds, représenté par une flèche. Étant donné un arc , on dit que est l'origine (ou la source ou le départ ou le début) de et que est la cible (ou l'arrivée ou la fin) de . Le demi-degré extérieur (degré sortant) d'un nœud, noté , est le nombre d'arcs ayant ce nœud pour origine.
JPEG 2000JPEG 2000 ou ISO/CEI 15444-1, abrégé JP2 (quelquefois J2K), est une norme de compression d’ commune à l’ISO, la CEI et l’UIT-T, développée entre 1997 et 2000, et créée par le groupe de travail Joint Photographic Experts Group. Depuis mai 2015, il est officiellement reconnu par l'ISO / CEI et l'UIT-T sous le code ISO/IEC CD 15444. JPEG 2000 peut travailler avec ou sans perte, en utilisant des transformées en ondelettes (méthode d’analyse mathématique du signal), dont la décomposition est similaire à la transformée de Fourier à court terme.
Calotte sphériquethumb|Une sphère et les deux calottes sphériques découpées par un plan En géométrie, une calotte sphérique est une portion de sphère délimitée par un plan. C'est un cas particulier de zone sphérique. Lorsque le plan passe par le centre de la sphère, on obtient un hémisphère. Cette surface de révolution sert de délimitant à deux types de solides : le secteur sphérique, portion de boule découpée par un cône le segment sphérique à une base, portion de boule découpée par un plan.
Graphe (type abstrait)thumb|upright=1.3|Un graphe orienté, dont les arcs et certains sommets sont « valués » par des couleurs. En informatique, et plus particulièrement en génie logiciel, le type abstrait graphe est la spécification formelle des données qui définissent l'objet mathématique graphe et de l'ensemble des opérations qu'on peut effectuer sur elles. On qualifie d'« abstrait » ce type de données car il correspond à un cahier des charges qu'une structure de données concrète doit ensuite implémenter.
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Segment sphériqueEn géométrie, un segment sphérique est le solide défini en coupant une boule avec une paire de plans parallèles. La surface du segment sphérique à l'exclusion des bases est appelée zone sphérique. Le segment sphérique est donc la partie de l’espace limitée par une zone sphérique et deux disques. Si le rayon de la sphère est appelé R, les rayons des bases des segments sphériques sont r1 et r2 et la hauteur du segment sphérique (la distance d'un plan parallèle à l'autre) appelée h, alors le volume du segment sphérique est : Lorsqu'un des plans est tangent à la sphère, on parle de segment sphérique à une base.
Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.