Tau de KendallEn statistique, le tau de Kendall (ou de Kendall) est une statistique qui mesure l'association entre deux variables. Plus spécifiquement, le tau de Kendall mesure la corrélation de rang entre deux variables. Elle est nommée ainsi en hommage à Maurice Kendall qui en a développé l'idée dans un article de 1938 bien que Gustav Fechner ait proposé une idée similaire appliquée aux séries temporelles dès 1897. Soit un ensemble d'observations des variables jointes et tel que les valeurs des et sont uniques.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Acquisition compriméeL'acquisition comprimée (en anglais compressed sensing) est une technique permettant de trouver la solution la plus parcimonieuse d'un système linéaire sous-déterminé. Elle englobe non seulement les moyens pour trouver cette solution mais aussi les systèmes linéaires qui sont admissibles. En anglais, elle porte le nom de Compressive sensing, Compressed Sampling ou Sparse Sampling.
Reconnaissance optique de caractèresvignette|Vidéo montrant un processus de reconnaissance optique de caractères effectué en direct grâce à un scanner portable. La reconnaissance optique de caractères (ROC, ou OCR pour l'anglais optical character recognition), ou océrisation, désigne les procédés informatiques pour la traduction d'images de textes imprimés ou dactylographiés en fichiers de texte. Un ordinateur réclame pour l'exécution de cette tâche un logiciel d'OCR.
Reconnaissance d'entités nomméesLa reconnaissance d'entités nommées est une sous-tâche de l'activité d'extraction d'information dans des corpus documentaires. Elle consiste à rechercher des objets textuels (c'est-à-dire un mot, ou un groupe de mots) catégorisables dans des classes telles que noms de personnes, noms d'organisations ou d'entreprises, noms de lieux, quantités, distances, valeurs, dates, etc. À titre d'exemple, on pourrait donner le texte qui suit, étiqueté par un système de reconnaissance d'entités nommées utilisé lors de la campagne d'évaluation MUC: Henri a acheté 300 actions de la société AMD en 2006 Henri a acheté 300 actions de la société AMD en 2006.
Transformeurvignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Calcul par réservoirLe calcul par réservoir (de l'anglais reservoir computing) est un cadre de calcul dérivé de la théorie des réseaux de neurones récurrents qui mappe un ou plusieurs signaux d'entrée dans des espaces de calcul de dimension supérieure grâce à la dynamique d'un système fixe et non linéaire appelé réservoir . Une fois que le signal d'entrée est introduit dans le réservoir, qui est traité comme une « boîte noire », un simple mécanisme de lecture est entraîné pour lire l'état du réservoir et le mapper à la sortie souhaitée.
Parallélisme de donnéeLe parallélisme par distribution de donnée ou parallélisme de donnée (data parallelism en anglais) est un paradigme de la programmation parallèle. Autrement dit, c'est une manière particulière d'écrire des programmes pour des machines parallèles. Les algorithmes des programmes qui entrent dans cette catégorie cherchent à distribuer les données au sein des processus et à y opérer les mêmes opérations à l'instar des SIMD. Le paradigme opposé est celui du parallélisme de tâche. Catégorie:Programmation concurr
Sparse dictionary learningSparse dictionary learning (also known as sparse coding or SDL) is a representation learning method which aims at finding a sparse representation of the input data in the form of a linear combination of basic elements as well as those basic elements themselves. These elements are called atoms and they compose a dictionary. Atoms in the dictionary are not required to be orthogonal, and they may be an over-complete spanning set. This problem setup also allows the dimensionality of the signals being represented to be higher than the one of the signals being observed.
Reconnaissance automatique de la parolevignette|droite|upright=1.4|La reconnaissance vocale est habituellement traitée dans le middleware ; les résultats sont transmis aux applications utilisatrices. La reconnaissance automatique de la parole (souvent improprement appelée reconnaissance vocale) est une technique informatique qui permet d'analyser la voix humaine captée au moyen d'un microphone pour la transcrire sous la forme d'un texte exploitable par une machine.