Robust T2 Relaxometry with Hamiltonian MCMC for Myelin Water Fraction Estimation
Publications associées (37)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The thesis is a contribution to extreme-value statistics, more precisely to the estimation of clustering characteristics of extreme values. One summary measure of the tendency to form groups is the inverse average cluster size. In extreme-value context, th ...
This paper presents a novel distributed estimation algorithm based on the concept of moving horizon estimation. Under weak observability conditions we prove convergence of the state estimates computed by any sensor to the correct state even when constraint ...
Powerful mathematical tools have been developed for trading in stocks and bonds, but other markets that are equally important for the globalized world have to some extent been neglected. We decided to study the shipping market as an new area of development ...
We study the problem of distributed estimation, where a set of nodes are required to collectively estimate some parameter of interest from their measurements. Diffusion algorithms have been shown to achieve good performance, increased robustness and are am ...
We present a simple and robust procedure that allows extracting with high fidelity speed distributions from ion images that contain a large background contribution. The procedure requires no detailed knowledge about the background and is conveniently appli ...
Generalized Linear Models have become a commonly used tool of data analysis. Such models are used to fit regressions for univariate responses with normal, gamma, binomial or Poisson distribution. Maximum likelihood is generally applied as fitting method. I ...
We pose the estimation of the parameters of multiple superimposed exponential signals in additive Gaussian noise problem as a Maximum Likelihood (ML) estimation problem. The ML problem is very non linear and hard to solve. Some previous works focused on fi ...
Le problème d'estimation de tables origine-destination (OD) à partir de données de comptages est de première importance pour un grand nombre d'applications impliquant la modélisation d'un système de transport. En effet, ces tables appréhendent statistiquem ...
This paper studies the local robustness of estimators and tests for the conditional location and scale parameters in a strictly stationary time series model. We first derive optimal bounded-influence estimators for such settings under a conditionally Gauss ...
In this paper we aim to explore what is the most appropriate number of data samples needed when measuring the temporal correspondence between a chosen set of video and audio cues in a given audio-visual sequence. Presently the optimal model that connects s ...