Pédagogies activesLa pédagogie active a pour objectif de rendre l'élève acteur de ses apprentissages. Si la pédagogie active est traduite dans le monde scientifique par le terme d'Active learning, l'expression dans le monde francophone peut également désigner les méthodes actives portées par des pédagogues comme Célestin Freinet et Maria Montessori.
Vision par ordinateurLa vision par ordinateur est un domaine scientifique et une branche de l’intelligence artificielle qui traite de la façon dont les ordinateurs peuvent acquérir une compréhension de haut niveau à partir d's ou de vidéos numériques. Du point de vue de l'ingénierie, il cherche à comprendre et à automatiser les tâches que le système visuel humain peut effectuer. Les tâches de vision par ordinateur comprennent des procédés pour acquérir, traiter, et « comprendre » des images numériques, et extraire des données afin de produire des informations numériques ou symboliques, par ex.
Analyse d'imageL'analyse d'image est la reconnaissance des éléments et des informations contenus dans une . Elle peut être automatisée lorsque l'image est enregistrée sous forme numérique, au moyen d'outils informatiques. Les tâches relevant de l'analyse d'image sont multiples, depuis la lecture de codes-barres, jusqu'à la reconnaissance faciale. L'analyse d'image intervient également dans le domaine de l'art et du graphisme, pour l'interprétation des compositions et signifiants.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Medical image computingMedical image computing (MIC) is an interdisciplinary field at the intersection of computer science, information engineering, electrical engineering, physics, mathematics and medicine. This field develops computational and mathematical methods for solving problems pertaining to medical images and their use for biomedical research and clinical care. The main goal of MIC is to extract clinically relevant information or knowledge from medical images.
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Échantillon biaiséEn statistiques, le mot biais a un sens précis qui n'est pas tout à fait le sens habituel du mot. Un échantillon biaisé est un ensemble d'individus d'une population, censé la représenter, mais dont la sélection des individus a introduit un biais qui ne permet alors plus de conclure directement pour l'ensemble de la population. Un échantillon biaisé n'est donc pas un échantillon de personnes biaisées (bien que ça puisse être le cas) mais avant tout un échantillon sélectionné de façon biaisée.
Biais de sélectionDans une étude statistique, le terme biais de sélection désigne une erreur systématique faite lors de la sélection des sujets à étudier. Ce terme regroupe tous les biais pouvant conduire à ce que les sujets effectivement observés lors d'une enquête ne constituent pas un groupe représentatif des populations censées être étudiées et ne permettent donc pas de répondre aux questions posées dans le protocole. Les biais de sélection se produisent lors de l'échantillonnage, c'est-à-dire lors de la sélection d'un échantillon représentatif de la population étudiée.