We consider the problem of designing sparse sampling strategies for multidomain signals, which can be represented using tensors that admit a known multilinear decomposition. We leverage the multidomain structure of tensor signals and propose to acquire samples using a Kronecker-structured sensing function, thereby circumventing the curse of dimensionality. For designing such sensing functions, we develop low-complexity greedy algorithms based on submodular optimization methods to compute near-optimal sampling sets. We present several numerical examples, ranging from multiantenna communications to graph signal processing, to validate the developed theory.
Mario Paolone, André Hodder, Lucien André Félicien Pierrejean, Simone Rametti
Alireza Karimi, Philippe Louis Schuchert
Marcos Rubinstein, Farhad Rachidi-Haeri, Elias Per Joachim Le Boudec, Chaouki Kasmi, Nicolas Mora Parra, Emanuela Radici