NP-difficilevignette|300px|Mise en évidence d'un problème NP-difficile si Problème P ≟ NP. Un problème NP-difficile est, en théorie de la complexité, un problème appartenant à la classe NP-difficile, ce qui revient à dire qu'il est au moins aussi difficile que les problèmes les plus difficiles de la classe NP. Ainsi, un problème H est NP-difficile, si tout problème L de la classe NP peut être réduit en temps polynomial à H. Si un problème NP-difficile est dans NP, alors c'est un problème NP-complet.
Conjecture des jeux uniquesLa conjecture des jeux uniques (en anglais Unique Games Conjecture et souvent abrégée UGC) est une conjecture en théorie de la complexité, proposée par Subhash Khot en 2002. Selon cette conjecture, résoudre de manière approximative un certain problème spécifique est NP-difficile. Elle a d'importantes applications relatives à la complexité des algorithmes d'approximation ; le travail qui a été fourni autour de cette conjecture a également permis de démontrer des résultats relatifs à d'autres sujets, par exemple sur la stabilité des systèmes de vote.
Branch and cutBranch and cut est une méthode d'optimisation combinatoire pour résoudre des problèmes d'optimisation linéaire en nombres entiers. Cette méthode utilise la méthode de séparation et évaluation et la méthode des plans sécants. Le principe est de résoudre la relaxation continue du programme linéaire en nombres entiers à l'aide de l'algorithme du simplexe. Lorsqu'une solution optimale est trouvée, et que l'une des variables qu'on souhaite entières a une valeur non entière, on utilise un algorithme de plan sécant pour trouver une contrainte linéaire satisfaite par toutes les valeurs entières de la solution mais violée par la valeur fractionnaire.
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Sommet (théorie des graphes)vignette|Dans ce graphe, les sommets 4 et 5 sont voisins alors que les sommets 3 et 5 sont indépendants. Le degré du sommet 4 est égal à 3. Le sommet 6 est une feuille. En théorie des graphes, un sommet, aussi appelé nœud et plus rarement point, est l'unité fondamentale d'un graphe. Deux sommets sont voisins s'ils sont reliés par une arête. Deux sommets sont indépendants s'ils ne sont pas voisins. alt=A small example network with 8 vertices and 10 edges.|vignette|Réseau de huit sommets (dont un isolé) et 10 arêtes.
Problème NP-completEn théorie de la complexité, un problème NP-complet ou problème NPC (c'est-à-dire un problème complet pour la classe NP) est un problème de décision vérifiant les propriétés suivantes : il est possible de vérifier une solution efficacement (en temps polynomial) ; la classe des problèmes vérifiant cette propriété est notée NP ; tous les problèmes de la classe NP se ramènent à celui-ci via une réduction polynomiale ; cela signifie que le problème est au moins aussi difficile que tous les autres problèmes de l
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Optimisation SDPEn mathématiques et en informatique théorique, l'optimisation SDP ou semi-définie positive, est un type d'optimisation convexe, qui étend l'optimisation linéaire. Dans un problème d'optimisation SDP, l'inconnue est une matrice symétrique que l'on impose d'être semi-définie positive. Comme en optimisation linéaire, le critère à minimiser est linéaire et l'inconnue doit également satisfaire une contrainte affine. L'optimisation SDP se généralise par l'optimisation conique, qui s'intéresse aux problèmes de minimisation d'une fonction linéaire sur l'intersection d'un cône et d'un sous-espace affine.
BPP (complexité)En informatique théorique, plus précisément en théorie de la complexité, la classe BPP (bounded-error probabilistic polynomial time) est la classe de problèmes de décision décidés par une machine de Turing probabiliste en temps polynomial, avec une probabilité d'erreur dans la réponse inférieure à 1/3. La classe BPP est l'ensemble des problèmes, ou de façon équivalente des langages, pour lesquels il existe une machine de Turing probabiliste en temps polynomial qui satisfait les conditions d'acceptation suivantes : Si le mot n'est pas dans le langage, la machine le rejette avec une probabilité supérieure à 2/3.