MagnétohydrodynamiqueLa magnétohydrodynamique (MHD) est une discipline scientifique qui décrit le comportement d'un fluide conducteur du courant électrique en présence de champs électromagnétiques. Elle s'applique notamment aux plasmas, au noyau externe et même à l'eau de mer. C'est une généralisation de l'hydrodynamique (appelée plus communément dynamique des fluides, définie par les équations de Navier-Stokes) couplée à l'électromagnétisme (équations de Maxwell).
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Double layer (plasma physics)A double layer is a structure in a plasma consisting of two parallel layers of opposite electrical charge. The sheets of charge, which are not necessarily planar, produce localised excursions of electric potential, resulting in a relatively strong electric field between the layers and weaker but more extensive compensating fields outside, which restore the global potential. Ions and electrons within the double layer are accelerated, decelerated, or deflected by the electric field, depending on their direction of motion.
Tube de flux magnétiqueUn tube de flux magnétique caractérise une région de l'espace où règne un fort champ magnétique occupant un territoire approximativement tubulaire. Ce champ, à la surface de sa zone de répartition, est parallèle à cette surface. On en trouve généralement autour des grands corps célestes tels que les étoiles. Le Soleil possède de nombreux tubes de flux, avec des diamètres de l'ordre de 300 kilomètres pour la plupart. Un certain nombre de tubes de flux plus importants comportant des diamètres de l'ordre de kilomètres sont connus comme étant directement en rapport avec les taches solaires.
RéluctanceLa réluctance, ou résistance magnétique, est une grandeur physique qui caractérise l'aptitude d'un circuit magnétique à s'opposer à sa pénétration par un champ magnétique. Le nom de cette grandeur a été créé par analogie avec celui de la résistance (électrique). L'inverse de la réluctance est appelé perméance magnétique. Cette analogie consiste à faire un parallèle entre les circuits électriques et les circuits magnétiques.
Magnetic helicityIn plasma physics, magnetic helicity is a measure of the linkage, twist, and writhe of a magnetic field. In ideal magnetohydrodynamics, magnetic helicity is conserved. When a magnetic field contains magnetic helicity, it tends to form large-scale structures from small-scale ones. This process can be referred to as an inverse transfer in Fourier space. This second property makes magnetic helicity special: three-dimensional turbulent flows tend to "destroy" structure, in the sense that large-scale vortices break up into smaller and smaller ones (a process called "direct energy cascade", described by Lewis Fry Richardson and Andrey Nikolaevich Kolmogorov).
Masse volumiqueLa masse volumique d'une substance, aussi appelée volumique de masse, est une grandeur physique qui caractérise la masse de cette substance par unité de volume. C'est l'inverse du volume massique. La masse volumique est synonyme des expressions désuètes « densité absolue », « densité propre », ou encore « masse spécifique ». Cette grandeur physique est généralement notée par les lettres grecques ρ (rhô) ou μ (mu). Leur usage dépend du domaine de travail. Toutefois, le BIPM recommande d'utiliser la notation ρ.
Flux (physique)En physique, un flux est une intégrale de surface de la composante normale d'un champ vectoriel sur une surface donnée. Le champ vectoriel associé est souvent nommé densité de flux. Cette définition rejoint celle du flux en mathématiques. Si dans certains domaines de la physique, le flux est également un débit, lié à un déplacement de matière ou à un transfert d'énergie, ce n'est pas toujours le cas : on aime malgré tout se représenter un flux comme caractéristique de ce qui s'écoule le long des lignes de champs à travers la frontière que marque la surface.
Densité de chargeLa densité de charge électrique désigne la quantité de charge électrique par unité d'espace. Selon que l'on considère un problème à 1, 2 ou 3 dimensions, c'est-à-dire une ligne, une surface ou un volume, on parlera de densité linéique, surfacique ou volumique de charge. Leurs unités sont respectivement le coulomb par mètre (), le coulomb par mètre carré () et le coulomb par mètre cube () dans le Système international. Comme il existe des charges négatives comme des charges positives, la densité de charge peut prendre des valeurs négatives.
Densité d'énergieEn physique, la densité d'énergie (ou densité énergétique) représente l'énergie par unité de volume en un point, concernant une forme d'énergie non localisée. Le concept de densité d'énergie est abondamment utilisé en relativité générale et en cosmologie car il intervient explicitement dans les équations déterminant le champ gravitationnel (les équations d'Einstein), mais il est également présent en mécanique des milieux continus et en électromagnétisme. Dans le Système international, l'unité de densité d'énergie est le joule par mètre cube ().