Invariance d'échelleIl y a invariance d'échelle lorsqu'aucune échelle ne caractérise le système. Par exemple, dans un ensemble fractal, les propriétés seront les mêmes quelle que soit la distance à laquelle on se place. Une fonction g est dite invariante d'échelle s'il existe une fonction telle que pour tout x et y : Alors, il existe une constante et un exposant , tels que : En physique, l'invariance d'échelle n'est valable que dans un domaine de taille limité — par exemple, pour un ensemble fractal, on ne peut pas se placer à une échelle plus petite que celle des molécules, ni plus grande que la taille du système.
Exposant critiqueLors d'une transition de phase de deuxième ordre, au voisinage du point critique, les systèmes physiques ont des comportements universels en lois de puissances caractérisées par des exposants critiques. Au point critique, un fluide est caractérisé par une température critique et une densité critique . Pour une température légèrement supérieure à (à nombre de particules et volume constants), le système est homogène avec une densité . Pour une température légèrement inférieure à , il y a une séparation de phase entre une phase liquide (de densité ) et une phase gazeuse (de densité ).
Modèle d'IsingLe modèle d'Ising est un modèle de physique statistique qui a été adapté à divers phénomènes caractérisés par des interactions locales de particules à deux états. L'exemple principal est le ferromagnétisme pour lequel le modèle d'Ising est un modèle sur réseau de moments magnétiques, dans lequel les particules sont toujours orientées suivant le même axe spatial et ne peuvent prendre que deux valeurs. Ce modèle est parfois appelé modèle de Lenz-Ising en référence aux physiciens Wilhelm Lenz et Ernst Ising.
Ising critical exponentsThis article lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.
Nombre leptoniqueLe est, en physique des particules, un nombre quantique invariant (tout comme le nombre baryonique) attribué aux particules et faisant l'objet d'une conservation lors d'une réaction nucléaire. Le nombre leptonique d'un système est défini comme la différence entre les nombres de leptons et d'antileptons qu'il contient : Le nombre leptonique est aussi défini comme la somme de trois nombres quantiques dits nombres leptoniques partiels : Le nombre leptonique vaut +1 pour un lepton, -1 pour un antilepton et 0 pour toute autre particule.
C parityIn physics, the C parity or charge parity is a multiplicative quantum number of some particles that describes their behavior under the symmetry operation of charge conjugation. Charge conjugation changes the sign of all quantum charges (that is, additive quantum numbers), including the electrical charge, baryon number and lepton number, and the flavor charges strangeness, charm, bottomness, topness and Isospin (I3). In contrast, it doesn't affect the mass, linear momentum or spin of a particle.
Point critique (thermodynamique)vignette| Le point critique d'un corps pur est le point du diagramme température-pression, généralement noté C, où s'arrête la courbe d'équilibre liquide-gaz. La température T et la pression P du point critique sont appelées température critique et pression critique du corps pur. Le volume molaire et la masse volumique du corps pur à ces température et pression (V et ρ) sont appelés volume critique et masse volumique critique (plus souvent, mais improprement, densité critique).
Parité (physique)La symétrie P ou parité, appelée aussi inversion de l'espace, est une opération au cours de laquelle le vecteur position subit le changement suivant : ou encore, pour les trois coordonnées cartésiennes En mécanique quantique, les fonctions d'onde qui sont inchangées par l'opération de parité sont dites fonctions paires, tandis que celles qui changent de signe sous la même transformation sont dites fonctions impaires. L'électrodynamique quantique et la chromodynamique quantique possèdent la symétrie P.
Température négativeCertains systèmes quantiques liés à la résonance magnétique nucléaire dans les cristaux ou les gaz ultrafroids possèdent des distributions d'énergie particulières pouvant être entièrement peuplées dans l'état de plus basse énergie (zéro absolu) mais également dans l'état de plus haute énergie. L'expression habituelle donnant la température d'un système à volume constant : (avec la température absolue, l'énergie interne, l'entropie, le volume) conduit donc à une fonction non définie au maximum d'entropie et négative au-delà.
Phénomène critiquevignette|Point critique de l'éthane : 1. état subcritique, liquide et gaz ; 2. opalescence critique ; 3. fluide supercritique. En physique, un phénomène critique est un phénomène associé à une transition de phase du deuxième ordre d'un système thermodynamique. Par exemple la transition de phase ferromagnétique et le comportement au voisinage du point critique liquide-gaz. La plupart des phénomènes critiques proviennent d'une divergence de la ou d'un ralentissement de la dynamique.