BarnLe barn (symbole b) est une unité d'aire employée spécialement en physique nucléaire et en physique des particules pour exprimer les sections efficaces. Cette unité se situe en dehors du Système international. Sa valeur est de soit ou . Cette unité est du même ordre de grandeur que la section géométrique du noyau d'un atome, le rayon du proton étant de . Cependant, les valeurs des sections efficaces diffèrent notablement de leurs valeurs géométriques et varient également de façon importante en fonction de la nature, de l'énergie du flux de particules et des interactions qu'elles subissent en traversant le matériau considéré.
Brillance de surfaceEn astronomie, la brillance de surface d'un corps céleste étendu comme une galaxie désigne la densité de flux reçue par unité d'angle solide. Elle est souvent mesurée en magnitude par seconde d'arc au carré (). Certains auteurs donnent aussi cette mesure en employant la minute d'arc. Les unités de la brillance de surface sont alors () La mesure de la brillance de surface dans les longueurs d'onde visible, ou dans l'infrarouge, est la photométrie. Le fond du ciel désigne la brillance de surface du ciel.
Fraction continue généraliséeEn mathématiques, une fraction continue généralisée est une expression de la forme : comportant un nombre fini ou infini d'étages. C'est donc une généralisation des fractions continues simples puisque dans ces dernières, tous les a sont égaux à 1. Une fraction continue généralisée est une généralisation des fractions continues où les numérateurs et dénominateurs partiels peuvent être des complexes quelconques : où an (n > 0) sont les numérateurs partiels et les bn les dénominateurs partiels.
Pivignette|Si le diamètre du cercle est 1, sa circonférence est π. π (pi), appelé parfois constante d’Archimède, est un nombre représenté par la lettre grecque du même nom en minuscule (π). C’est le rapport constant de la circonférence d’un cercle à son diamètre dans un plan euclidien. On peut également le définir comme le rapport de l'aire d'un disque au carré de son rayon. Sa valeur approchée par défaut à moins de 0,5×10 près est en écriture décimale.
Fraction continue de GaussEn analyse complexe, une fraction continue de Gauss est un cas particulier de fraction continue dérivé des fonctions hypergéométriques. Ce fut l'un des premiers exemples de fractions continues analytiques. Elles permettent de représenter des fonctions élémentaires importantes, ainsi que des fonctions spéciales transcendantes plus compliquées. Lambert a publié quelques exemples de fractions continues généralisées de cette forme en 1768, démontrant entre autres l'irrationalité de π ( § « Applications à F » ci-dessous).